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appear.
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L LA
gang Background

This is classical pattern containment, so we write o < 7 if T contains a subsequence in the same relative order as o.

A permutation class is a downset in this order.

e C, denotes the permutations in the class C of length n.

e The basis of the class C is the minimal permutations not in C;
Av(B) = {r : wavoids B for all 8 € B}.

e The generating function of the class C is
> lela” = 32"

nel =

e The (upper) growth rate of the class C is defined as
gr(C) = limsup 7/ |C.].
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e C, denotes the permutations in the class C of length n.

e The basis of the class C is the minimal permutations not in C;
Av(B) = {r : wavoids B for all 8 € B}.

e The generating function of the class C is
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e The (upper) growth rate of the class C is defined as
gr(C) = limsup 7/ |C.].

Does lim 7|C,| always exist?

n—oo
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| i Background

Conjecture (Noonan and Zeilberger 1996): For any finite basis B, the class Av(B) has a D-finite generating function.

(f is D-finite if it and all of its derivatives span a finite dimensional vector space over C|[z]].)
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Conjecture (Noonan and Zeilberger 1996): For any finite basis B, the class Av(B) has a D-finite generating function.

(f is D-finite if it and all of its derivatives span a finite dimensional vector space over C|[z]].)

e Conjecture (Zeilberger PP2005): The Noonan-Zeilberger Conjecture is false.
¢ Conjecture! (Zeilberger PP2005): "Not even God knows Avigpo(1324)."

Conjecture (Balogh, Bollobas, and Morris 2005): Growth rates are always algebraic integers.

¢ Theorem (Albert and Linton 2009): The set of growth rates contains an uncountable perfect set...
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D Growth rates
0 1 ¢ 2 K
I — | | —

e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).

e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A ~ 2.48, all real numbers are growth rates (V 2010).
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e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).
e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A ~ 2.48, all real numbers are growth rates (V 2010).
There is a phase transition at k:

e K is the first accumulation point of accumulation points of growth rates.
e K is the first growth rate that admits an infinite antichain.

e Only countably many permutation classes have growth rates under k.

15/89






