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L LA
gang Background

This is classical pattern containment, so we write o < 7 if T contains a subsequence in the same relative order as o.

A permutation class is a downset in this order.

e C, denotes the permutations in the class C of length n.

e The basis of the class C is the minimal permutations not in C;
Av(B) = {r : wavoids B for all 8 € B}.

e The generating function of the class C is
> lela” = 32"

nel =

e The (upper) growth rate of the class C is defined as
gr(C) = limsup 7/ |C.].
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gang Background

This is classical pattern containment, so we write o < 7 if T contains a subsequence in the same relative order as o.

A permutation class is a downset in this order.

e C, denotes the permutations in the class C of length n.

e The basis of the class C is the minimal permutations not in C;
Av(B) = {r : wavoids B for all 8 € B}.

e The generating function of the class C is
> lela” = 32"

nel =

e The (upper) growth rate of the class C is defined as
gr(C) = limsup 7/ |C.].

Does lim 7|C,| always exist?

n—oo
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| i Background

Conjecture (Noonan and Zeilberger 1996): For any finite basis B, the class Av(B) has a D-finite generating function.

(f is D-finite if it and all of its derivatives span a finite dimensional vector space over C|[z]].)
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o Background

Conjecture (Noonan and Zeilberger 1996): For any finite basis B, the class Av(B) has a D-finite generating function.

(f is D-finite if it and all of its derivatives span a finite dimensional vector space over C|[z]].)

e Conjecture (Zeilberger PP2005): The Noonan-Zeilberger Conjecture is false.
¢ Conjecture! (Zeilberger PP2005): "Not even God knows Avigpo(1324)."

Conjecture (Balogh, Bollobas, and Morris 2005): Growth rates are always algebraic integers.

¢ Theorem (Albert and Linton 2009): The set of growth rates contains an uncountable perfect set...
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D Growth rates
0 1 ¢ 2 K
I — | | —

e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).

e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A ~ 2.48, all real numbers are growth rates (V 2010).
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e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).

e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A ~ 2.48, all real numbers are growth rates (V 2010).

There is a phase transition at k:
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e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).

e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A ~ 2.48, all real numbers are growth rates (V 2010).
There is a phase transition at k:

e K is the first accumulation point of accumulation points of growth rates.
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e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).

e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A ~ 2.48, all real numbers are growth rates (V 2010).
There is a phase transition at k:

e K is the first accumulation point of accumulation points of growth rates.

e K is the first growth rate that admits an infinite antichain.
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e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).
e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A ~ 2.48, all real numbers are growth rates (V 2010).
There is a phase transition at k:

e K is the first accumulation point of accumulation points of growth rates.
e K is the first growth rate that admits an infinite antichain.

e Only countably many permutation classes have growth rates under k.
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0 1 ¢ 2 K
R — | —— -

e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).
e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A = 2.48, all real numbers are growth rates (V 2010).
There is a phase transition at k:

e K is the first accumulation point of accumulation points of growth rates.
e K is the first growth rate that admits an infinite antichain.
e Only countably many permutation classes have growth rates under k.

e All permutation classes of growth rate less than x have rational generating functions (ARY 2012+).
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DISCRETE
MATHEMATICS

ELSEVIER Discrete Mathematics 195 (1999) 27-38

Restricted permutations

M.D. Atkinson™

School of Mathematical and Computational Sciences, North Haugh, St Andrews,
Fife KY16 9SS, UK

Received 6 November 1997; revised 11 March 1998; accepted 13 April 1998

o Initiated the systematic study of permutation classes.

e 59 citations on Google Scholar.
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Department of Computer Science, University of Otago, New Zealand.
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(Received: 30 May 2001; accepted: 24 January 2002)

e Initiated the systematic study of infinite antichains of permutations.

e 44 citations on Google Scholar.
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Pre-background

Order 19: 101-113, 2002.

© 2002 Kluwer Academic Publishers. Printed in the Netherlands. 101

Partially Well-Ordered Closed Sets of Permutations

M. D. ATKINSON

Department of Computer Science, University of Otago, New Zealand.
E-mail: mike@cs.otago.ac.nz

M. M. MURPHY and N. RUSKUC
School of Mathematics and Statistics, University of St Andrews, U.K.
E-mail: {max,nik} @mecs.st-and.ac.uk

(Received: 30 May 2001; accepted: 24 January 2002)

e Initiated the systematic study of infinite antichains of permutations.
e 44 citations on Google Scholar.

e Introduced W-classes; precursors of monotone grid classes.
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Pre-background

DISCRETE
MATHEMATICS

ELSEVIER Discrete Mathematics 259 (2002) 19-36

www.elsevier.com/locate/disc

Restricted permutations and the wreath product

M.D. Atkinson®*, T. Stitt°

A Department of Computer Science, University of Otago, P.O. Box 56, Dunedin, New Zealand
b School of Computer Science, North Haugh, St Andrews, Fife KYI16 9SS, UK

Received 17 August 1999; received in revised form 27 July 2001; accepted 28 January 2002

e Initiated the study of the substitution decomposition of permutations.

e 44 citations on Google Scholar.
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Pre-background

Available at
www,ComputerScienceWeb.com Theoretical
FOWERED BY BCIENCE DIRECT?® CDmpuIEI'SEiEl'IEE
ELSEVI ER- Theoretical Computer Science 306 (2003) 85-100

www.elsevier.com/locate/tcs

Regular closed sets of permutations

M.H. Albert?, M.D. Atkinson®*, N. Ruskuc®

2 Department of Computer Science, University of Otago, New Zealand
°School of Mathematics and Statistics, University of St Andrews, UK

Received 12 June 2002; received in revised form 19 February 2003; accepted 26 February 2003
Communicated by W. Szpankowski

e |nitiated the use of formal language theory in the study of permutation classes.

« Established the first general criterion to show that permutation classes have rational generating functions.

e 29 citations on Google Scholar.
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e The jump from 1 to ¢ is the Fibonacci Dichotomy of Kaiser and Klazar (2003).
e Below k ~ 2.21, we have a characterization of all growth rates (V 201 I).

e Above A = 2.48, all real numbers are growth rates (V 2010).
There is a phase transition at k:

e K is the first accumulation point of accumulation points of growth rates.
e K is the first growth rate that admits an infinite antichain.
e Only countably many permutation classes have growth rates under k.

e All permutation classes of growth rate less than x have rational generating functions (ARY 2012+).
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FIEIRIMIULTIALTL oL .
| g Outline of (rest of) talk

Tools:

=2

e The substitution decomposition: blowing permutations up.

e Grid classes: chopping permutations up.

Small permutation classes:

e Structure.

¢ Enumeration.

Other recent (& future?) uses of these tools.
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1 Substitution

=2

Let m be a permutation of length m and «,. . ., a,, arbitrary permutations.

We form the inflation 7|a;, . .., &) by replacing each entry 7(%) by an "interval" which is order isomorphic to ¢; in
such a way that the intervals themselves are order isomorphic to .
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1 Substitution

=2

Let 7 be a permutation of length m and «,. .., a,, arbitrary permutations.

We form the inflation 7|a;, . .., &) by replacing each entry 7(%) by an "interval" which is order isomorphic to ¢; in
such a way that the intervals themselves are order isomorphic to .

Example: 3142
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u Substitution

=2

Let 7 be a permutation of length m and «,. .., a,, arbitrary permutations.

We form the inflation 7|a;, . .., &) by replacing each entry 7(%) by an "interval" which is order isomorphic to ¢; in
such a way that the intervals themselves are order isomorphic to .

Example: 31422413, 321,132, 12| .
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=2

Given permutation classes C and U, we define
ClU] = {~rla1,...,an] : T€Cyr and ay,...,a, € U},
the inflation of C by U.
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1 Substitution

=2

Given permutation classes C and U, we define
ClU] = {~rla1,...,an] : T€Cyr and ay,...,a, € U},
the inflation of C by U.

We also want to inflate classes by themselves.

c[ﬂ] — {1}:
ct =,
c[ﬂ] — C[ )

cli+1l = clct,

30/89



HEIRIULTIALTL IR .
1 Substitution

=2

Given permutation classes C and U, we define
ClU] = {~rla1,...,an] : T€Cyr and ay,...,a, € U},
the inflation of C by U.

We also want to inflate classes by themselves. The substitution completion of the class C is
¢ = {1}, ©=Jct.
el — ¢ . e o
’ (Inflate anything in C by any sequence of permutations in C,
c? =¢[c], as many times as you like.)
clitll — C[C[“]],
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%ﬁ Griddings

Let M be a matrix of permutation classes. The permutation 7 has an M-gridding if 7 can be chopped up into a block
structure ("gridded”) such that each block lies in the class specified by M.

=2

M — Av(231) Av(12) . . .
| Av(321) Av(12,21)
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2101:1[2

=2

_ [ Av(231)
M= ( Av(321)

The grid class of M is defined as

Av(12)
Av(12,21)

Grid(M) = {= : whas an M-gridding}.

|

Griddings

Let M be a matrix of permutation classes. The permutation 7 has an M-gridding if m can be chopped up into a block
structure ("gridded”) such that each block lies in the class specified by M.
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1 Characterization

Let C and D be classes. C is D-griddable if there is some (finite) matrix M, all entries of which equal D, for which
C C Grid(M).

=2
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1 Characterization

Let C and D be classes. C is D-griddable if there is some (finite) matrix M, all entries of which equal D, for which
C C Grid(M).

=2

Theorem (V 201 |). The class C is D-griddable if and only if C contains neither arbitrarily long sums nor skew sums of
basis elements of D.

a sum a skew sum

Key take-away: We can tell if a class is D-griddable.

35/89



FICIRIOLTALTE R e e
i [ Monotone griddings

=2

Grid(M) is a monotone grid class if the entries of M are monotone (or empty) classes — Av(21), Av(12), or 0.
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=2

Grid(M) is a monotone grid class if the entries of M are monotone (or empty) classes — Av(21), Av(12), or 0.

- [ Av(21) Av(12)
M= (Av(lZ) Av(21))

These are the skew-merged permutations, Av(2143, 3412). They were introduced by Stankova in 1994 and first
enumerated in...
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=2

Grid(M) is a monotone grid class if the entries of M are monotone (or empty) classes — Av(21), Av(12), or 0.

_ [ Av(21) Av(12)
M= (Av(12) Av(21))

These are the skew-merged permutations, Av(2143, 3412). They were introduced by Stankova in 1994 and first
enumerated in...

Permutations which are the union of an
increasing and a decreasing subsequence

M.D. Atkinson
School of Mathematical and Computational Sciences

North Haugh, St Andrews, Fife KY16 9SS, UK
mda@dcs.st-and.ac.uk
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=2

Grid(M) is a monotone grid class if the entries of M are monotone (or empty) classes — Av(21), Av(12), or 0.

- [ Av(21) Av(12)
M= (Av(lZ) Av(21))

These are the skew-merged permutations, Av(2143, 3412). They were introduced by Stankova in 1994 and first
enumerated in...

Permutations which are the union of an
increasing and a decreasing subsequence

M.D. Atkinson
School of Mathematical and Computational Sciences

North Haugh, St Andrews, Fife KY16 9SS, UK
mda@dcs.st-and.ac.uk

P.S. Henning: The resolution of your conjecture is (basically) in there.
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i [ Geometric griddings

=2

Waton: permutations are "points on a plane”.

"Points drawn on a circle" "The X class”
Woaton and V (201 |) Elizalde (201 1)
1 — 6z + 122% — 102> + 5z + 22° — 22° 1—3z

(1 -4z +22?)(1 — z)° 1 — 4z + 227
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i [ Geometric griddings

=2

Let M beat X u 0/ %1 matrix. To construct the standard figure of M, create a £ X u rectangular grid with cells Ck
and then:

o If M, =1, draw the SW-NE diagonal in Cf..
o If M, = —1, draw the NW-SE diagonal in Ck.
e |If Mk,f = D, leave G,Ig,f empty.
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=2

Let M beat X u 0/ %1 matrix. To construct the standard figure of M, create a £ X u rectangular grid with cells Ck
and then:

o If M, =1, draw the SW-NE diagonal in Cf..
o If M, = —1, draw the NW-SE diagonal in Ck.
e |If Mk,‘f = U, leave G,Ig,f empty.

7
v
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i [ Geometric griddings

=2

Let M beat X u 0/ %1 matrix. To construct the standard figure of M, create a £ X u rectangular grid with cells Ck
and then:

o If M, =1, draw the SW-NE diagonal in Cf..
o If M, = —1, draw the NW-SE diagonal in Ck.
e |If Mk,‘f = U, leave G,Ig,f empty.

7
v

The geometric grid class of M, denoted Geom (M), is the set of permutations that can be "drawn" on this figure.
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GUUNGGRE "Strai ing"
G Straightening

=2

Sometimes we can "straighten"” all of the elements of a monotone grid class. In other words, sometimes
Grid(M) = Geom(M).

R N/
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=2

Sometimes we can "straighten"” all of the elements of a monotone grid class. In other words, sometimes

Grid(M) = Geom(M).

R

But sometimes we can't; the permutations that can be drawn on an X are a proper subclass of the skew-merged

permutations.

"Straightening”

N/
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GUUNGGRE "Strai ing"
G Straightening

=2

Sometimes we can "straighten"” all of the elements of a monotone grid class. In other words, sometimes
Grid(M) = Geom(M).

R N/

But sometimes we can't; the permutations that can be drawn on an X are a proper subclass of the skew-merged
permutations.

Whether we can straighten a monotone grid class depends on whether it contains cycles.
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=2

We can encode the elements of any geometric grid class
with words from a regular language.

47 1 89



EEE . . .

1 Geometric griddings
We can encode the elements of any geometric grid class
with words from a regular language.

Words are good —
Nik Ruskuc \
PP2o10
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| g Enumeration

=2

Let C be a permutation class.

o Cis strongly rational if every subclass D C C has a rational generating function.

e Cis strongly algebraic if every subclass D C C has an algebraic generating function.
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| g Enumeration

=2

Let C be a permutation class.

o Cis strongly rational if every subclass D C C has a rational generating function.

o Cis strongly algebraic if every subclass D C C has an algebraic generating function.

|. Theorem (AABRV 2012+). Geom(M) is strongly rational.
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| g Enumeration

Let C be a permutation class.

o Cis strongly rational if every subclass D C C has a rational generating function.

o Cis strongly algebraic if every subclass D C C has an algebraic generating function.

|. Theorem (AABRV 2012+). Geom(M) is strongly rational.
2. Theorem (ARV 2012+). (Geom(M)) is strongly algebraic.
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PENE Enumeration
Let C be a permutation class.

o Cis strongly rational if every subclass D C C has a rational generating function.

o Cis strongly algebraic if every subclass D C C has an algebraic generating function.

|. Theorem (AABRV 2012+). Geom(M) is strongly rational.
2. Theorem (ARV 2012+). (Geom(M)) is strongly algebraic.
3. Theorem (ARV 2012+). Geom(M)|U] is strongly rational whenever U is strongly rational.
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HEIRIULTIALTL IR . .
Pl Oscillations

The story of small permutation classes revolves around the oscillations.

[~2
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Pl Oscillations

The story of small permutation classes revolves around the oscillations.

=2

Let O denote the class of all oscillations, and all permutations contained in oscillations.

It can be computed that gr(O) = k ~ 2.21.
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1 Oscillations

=2

The story of small permutation classes revolves around the oscillations.

Let O denote the class of all oscillations, and all permutations contained in oscillations.

It can be computed that gr(O) = k ~ 2.21.

The basis of (O) can be shown to consist of 25314, 41352, 246153, 251364, 314625, 351624, 415263, and every
symmetry of one of these permutations.
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Pl Oscillations

The story of small permutation classes revolves around the oscillations.

=2

Let O denote the class of all oscillations, and all permutations contained in oscillations.
It can be computed that gr(O) = k ~ 2.21.

The basis of (O) can be shown to consist of 25314, 41352, 246153, 251364, 314625, 351624, 415263, and every
symmetry of one of these permutations.

From this, it can be computed that every class with gr < 2.24 is {(O)-griddable.
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Gridding small classes

(O) (O) (O) (O) (O) (O)
(O) (O) (O) (O) (O) (O)
(O) (O) (O) (O) (O) (O)
(O) (O) (O) (O) (O) (O)
(O) (O) (O) (O) (O) (O)
(O) (O) (O) (O) (O) (O)

57189



HEIRIULTIALTL IR e e
ol Gridding small classes

=2

e gr(QO) = &, so a small class cannot contain all of O.
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ol Gridding small classes

=2

e gr(QO) = &, so a small class cannot contain all of O.

e Because of the structure of O, this implies that there is
a bound, say k, on the length of an oscillation in any
small class. Define

O = {oscillations of length at most k}
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HEIRIULTIALTL IR e e
ol Gridding small classes

=2

e gr(0) =k, so a small class cannot contain all of O.

e Because of the structure of O, this implies that there is
a bound, say k, on the length of an oscillation in any
small class. Define

O = {oscillations of length at most k}

o Every small class is (O)-griddable for some k.
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Gridding small classes

Or) | Ok) | Ok) | Ok) | Ok | (Ok)
Or) | Ok) | Ok) | Ok) | Ok | (Ok)
Or) | Ok) | Ok) | Ok) | Ok | (Ok)
Or) | Ok | Ok | Ok) | Ok | (Ok)
Or) | Ok | Ok | Ok) | Ok | (Ok)
Or) | Ok | Ok | Ok) | Ok | (Ok)
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ol Gridding small classes

=2

e "Deep" inflations make for large permutation classes, so
there must be an absolute bound on the "substitution
depth" of permutations in a small class.
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HEIRIULTIALTL IR e e
ol Gridding small classes

=2

e "Deep" inflations make for large permutation classes, so
there must be an absolute bound on the "substitution
depth" of permutations in a small class.

e Define

Or = Or U Av(12) U Av(21).
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ol Gridding small classes

=2

e "Deep" inflations make for large permutation classes, so
there must be an absolute bound on the "substitution
depth" of permutations in a small class.

e Define

Or = O U Av(12) U Av(21).

e Every small class is @E] -griddable for some d.
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(Grid may have been enlarged.)
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=2

e Now that the cells have finitely many simple
permutations and bounded substitution depth, it is
possible to "slice” the gridding. In particular, we can
"slice" the griddings of small classes.

Gridding small classes

AL

AL

AL

AL

Oy O O, O, O, O,
o | o | of | & | & | &
of | of | of | o | o | &
of | of | of | of | of | of
o | e | e | o | o | &
of | of | of | of | of | of

(Grid may have been enlarged.)

66 / 89



CRIEJUETIALT). 19]11
EE

=2

e Now that the cells have finitely many simple
permutations and bounded substitution depth, it is
possible to "slice” the gridding. In particular, we can
"slice" the griddings of small classes.

¢ |f three cells in the same row or column were to have
"unbounded alternations”, it would force the growth
rate above 3.

Gridding small classes

AL

AL

AL

AL

Oy O O, O, O, O,
o | o | of | & | & | &
of | of | of | o | o | &
of | of | of | of | of | of
o | e | e | o | o | &
of | of | of | of | of | of

(Grid may have been enlarged.)
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=2

e Now that the cells have finitely many simple
permutations and bounded substitution depth, it is
possible to "slice” the gridding. In particular, we can
"slice" the griddings of small classes.

¢ |f three cells in the same row or column were to have
"unbounded alternations”, it would force the growth
rate above 3.

e If three cells in a "hook shape" were to have
"unbounded alternations”, it would force the growth
rate above 1 + ¢ ~ 2.62.

Gridding small classes

AL

AL

AL

AL

O, O, O, O, o; o
of | o | o | of | of | &f
ol | & | & | & | & | &
of | of | of | o | o | of
of | of | of | o | o | of
of | of | of | o | o | of

(Grid may have been enlarged.)
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i ridding small classes
* Now that the cells have finitely many simple . (d . (d . . . d 1
. L . O, O, O, O, O, O,
permutations and bounded substitution depth, it is
possible to "slice” the gridding. In particular, we can
"slice" the griddings of small classes. o o oy oy oy oy
e If three cells in the same row or column were to have
"unbounded alternations", it would force the growth ol | o | & | & | & | &
rate above 3.
e If three cells in a "hook shape" were to have oy oy o o oy o
"unbounded alternations”, it would force the growth
rate above 1 + ¢ ~ 2.62. H4 H4 H4 H4 B B
k k k k k k
e So we have only bounded alternations, and can "slice”
them. & & & & & &

(Grid may have been enlarged.)
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Gridding small classes

(Grid may have been enlarged.)
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+ If a non-monotone cell were to have "unbounded >
alternations” with another (even monotone cell) in the ¢
same row or column, that would force the growth rate

above 1 +v/2 ~ 2.41.

]

]

]

]

o O

AL

O,

(Grid may have been enlarged.)
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1 pae Gridding small classes
o If a non-monotone cell were to have "unbounded 7

alternations” with another (even monotone cell) in the
same row or column, that would force the growth rate

AL

above 1 + /2 ~ 2.41. o
e So we can slice these bounded alternations, and thereby
insist that only monotone cells can share a row or o
column.
oy
o; o’

AL

O,

(Grid may have been enlarged.)
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Theorem (V 201 |). Every small permutation class is M-
griddable for a matrix M in which:

|. every entry is @E], Av(21), Av(12), or the empty set;

2. every entry equal to @f] is the unique nonempty entry
in its row and column; and

3. if two nonempty entries share a row or a column with
each other then neither shares a row or column with
any other nonempty entry.

Gridding small classes

Av(12)

]

Av(21)

]

Av(21)

Av(21)

oy

(Grid may have been enlarged.)
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Theorem (V 201 |). Every small permutation class is M-
griddable for a matrix M in which:

|. every entry is @E], Av(21), Av(12), or the empty set;

2. every entry equal to @f] is the unique nonempty entry
in its row and column; and

3. if two nonempty entries share a row or a column with
each other then neither shares a row or column with
any other nonempty entry.

FIEIR|T
ol Counting small classes

]

-

]

/]

]
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Now we're looking at the inflation of a geometric grid class
7]
b?’f)k .
O}, contains only finitely many non-monotone permutations, o

so it is geometrically griddable itself.

Therefore: /

e (O is strongly rational, [

~ [9 -

. OE::] = Og|Ox| is strongly rational, ... / /
- - o [d—

. Of] = Ok _OEE 1]] is strongly rational, so

¢ Geom(M) [E)E]] is strongly rational. o
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A TahE Counting small classes

Theorem (ARV 2012+). If gr(C) < k = 2.21, then C has a \

=2

rational generating function.

P
?——— ]i- f}f’ | IIH% —+Hil IHFHH{?IC—A_
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Classes avoiding two patterns of length 4

There are 56 symmetry classes and 38 Wilf equivalence classes, of which 18 have been enumerated.

B sequence enumerating Av,(B)
4321, 1234 1, 2, 6, 22, 86, 306, 882, 1764, ..
4312, 1234 1, 2, 6, 22, 86, 321, 1085, 3266, ...
4321, 3124 1, 2, 6, 22, 86, 330, 1198, 408/, ...
4312, 2134 1, 2, 6, 22, 86, 330, 1206, 4174, ...
4321, 1324 1, 2, 6, 22, BB, 332, 1217, 4140, ...
4321, 21431, 2, §, 22, BB, 333, 1235, 4339, ...
4312, 1324 1, 2, 6, 22, BB, 335, 1266, 45098, ...
4231, 21431, 2, 6, 22, BB, 335, 1271, 4680, ...
4231, 1324 1, 2, 6, 22, BB, 336, 1282, 4/58, ...
4213, 2341 1, 2, 6, 22, BB, 336, 1280, 4870, ...
4312, 21431, 2, 6, 22, BB, 337, 1205, 4854, ...

A4 194714 O B 29 QR 177

4 0

A

OEIS type of sequence

n'a finite
A116705 polynomial
A116708 rational g.f.
A116706 rational g.f.
A165524 polynomial
A165525

A165526

A165527 rational g.f.
A165528 rational g.f.
A116709 rational g.f.
A165529

A44E874N | ratinnal m~ f

exact enumeration reference
Erdés—Szekeres theorem
Kremer & Shiu (2003}
Kremer & Shiu (2003}
Kremer & Shiu (2003}
Vatter (2012)

Albert, Atkinson & Brignall (2011)
Albert, Atkinson & Vatter (2009)
Kremer & Shiu (2003)

Krarmar & Shkhio 2000004
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Theorem (Albert, Atkinson, and Brignall 201 1). The class Av(2143,4231) is the union of two geometric grid classes:

/

Other applications

/1N

\/

\|/
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Theorem (Albert, Atkinson, and Brignall 201 1). The class Av(2143,4231) is the union of two geometric grid classes:

/

The generating function of this class is

r—112%2 +51z° — 126z* + 186z° — 1652° + 872" — 2328 + 32°
(1—3z)(1 —2)*(1 — 3z + z2)? |
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Theorem (Albert, Atkinson, and V 2012+). The class Av(4231, 3124) is contained in the substitution completion of the
geometric grid class
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Theorem (Albert, Atkinson, and V 2012+). The class Av(4231, 3124) is contained in the substitution completion of the
geometric grid class

Its generating function is

1 — 8z +20z% — 20z% +10z* — 22° — /1 — 122 + 5222 — 9623 + 6822 — 162°
2(1 — 3z + 22)(—1 + 5z — 422 + 23) '
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Theorem (Albert, Atkinson, and V 2012+). The class Av(4312,3142) is contained in the substitution completion of the
geometric grid class
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Theorem (Albert, Atkinson, and V 2012+). The class Av(4312,3142) is contained in the substitution completion of the
geometric grid class

Its generating function satisfies the algebraic equation

(2° —22° +2)f* + (42°®-9z°+6z—1)f°
+ (62° — 122+ Tz —1)f°
+ (42° —5z° +2)f
+ z° 0.

83/89



HEIRIULTIALTL IR .
oo Other applications

=2

Theorem (Albert, Atkinson, and V 2012+). The class Av(4213,3142) is contained in the substitution completion of the
geometric grid class

/]
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Theorem (Albert, Atkinson, and V 2012+). The class Av(4213,3142) is contained in the substitution completion of the
geometric grid class

/]

Its generating function satisfies the algebraic equation

22 + (72° -T2 +22)f°
4 3 2 -
+ (z*+142° — 212 + 10z — 1) f*
(4z* + 82° — 192% + 11z — 2) f°
(6z* — 5z® — 22% + 2z) f°
(4z* — 72° + 42® — z)f

gt — 243 + 2

+ + + +

|
=
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Pl The future

For PP2013?

Conjecture (Albert and Atkinson 2005). Every proper, finitely based, subclass of Av(321) has a rational generating
function.

=2
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For PP2013?

Conjecture (Albert and Atkinson 2005). Every proper, finitely based, subclass of Av(321) has a rational generating
function.

For PP2020?

Fix the gap in the number line...

=2
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o The future

For PP2013?

Conjecture (Albert and Atkinson 2005). Every proper, finitely based, subclass of Av(321) has a rational generating
function.

For PP2020?

Fix the gap in the number line...
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