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Origin of this talk



What do we want to do?

✤ Come up with and prove conjectures such as:

              A perm is West-2-stack-sortable if and only if it avoids

(Proved by West in his thesis, 1990)



There is a nice algorithm...

✤ ... for classical patterns: What patterns does this class avoid?

{1, 12,21, 132,213,231,312,321, 
1432,2143,2413,2431,3142,3214,3241,3412,3421,4132,4213,4231,4312, ... }

✤ We scan through the list and when we see the first missing perm we 
add it to the base B = {123}

✤ We keep on scanning and when we see another missing perm we 
check if it contains something from the base. If not we add it to the 
base. B = {123,4321}. We keep going and hope the base stops growing

✤ Note that we are using the missing perms to discover the patterns



But not everything is “classical”

✤ Sometimes a set of perms has an infinite or no basis

✤ Mesh patterns to the rescue! (Brändén & Claesson, 2010)

✤ Any set of permutations can be described by mesh patterns



Mesh patterns in permutations

✤ A few mesh patterns inside 
513426



An algorithm for mesh patterns

✤ Step 1: Discover the allowed patterns
This is easy - also parallelizes beautifully!

✤ Step 2: Find forbidden patterns
This is the hard part. One way is to search through all possibilities

The search space will grow like n!*2(n+1)2

✤ Step 2’: Generate (in a smart way) the forbidden patterns.
For n = 4 this reduces the run-time from 18 hours to 0.18 seconds!

This was the first
implementation -

it was slow!



Testing, testing (sagenb.org)

✤ Stack-sortable permutations avoid                    (Knuth ~1960) 

✤ West-2-stack-sortable perms avoid                                     (West 1990)

✤ Factorial Schubert varieties correspond to permutations avoiding

(Bousquet-Mélou & Butler 2006)



Stack-sortable 
perms



West-2-stack-sortable perms



Factorial Schubert varieties



You can play with this yourself

sagenb.org



How do we generate the 
forbidden patterns?
✤ Given the allowed patterns from step 1) we generate the minimal 

forbidden patterns (can’t search through all possibilities: n!*2(n+1)2)

✤ What does that mean? If the following patterns are allowed

  then step 2’) will generate two forbidden patterns.



Redundancy

✤ We generate the forbidden patterns for each length individually so 
there is redundancy between different lengths

✤ We only need to remember that the smaller one is forbidden

✤ There is still some redundancy in the output which we have ideas on 
how to remove (based on the shading lemma, upgrading, minimal 
permutations, but current implementations are too slow)



New conjectures

✤ As shown above the algorithm can find old theorems

✤ Discovered some new conjectures: Tableaux conjectures!

✤ But first: what is a tableau



Young tableaux

✤ There is a beautiful bijection between permutations and pairs of YT’s, 
e.g. 581279643 gives us (using Sage!)

✤ The bijection has several nice properties. But it has been hard to 
connect patterns in permutations to something in the tableaux

✤ Only special cases are known, e.g. separable patterns (Crites, Panova 
& Warrington 2011)

✤ We have some new conjectures and results



Perms with hook-shaped tableaux

✤ Theorem (HÚ & Claesson, Atkinson)
A perm has hook-shaped tableaux if and only if it avoids

As pointed out by Vince Vatter, this actually follows from 
a paper by Atkinson on skew-merge perms



Sketch of proof

✤ If a perm contains the patterns 
then it is not hook-shaped by a
theorem of Crites, Panova &
Warrington, 2011

✤ Assume it contains



✤ So we have either

✤ This will produce a box
in the tableaux.

✤ The other mesh pattern
is similar

Sketch of proof, cont.

✤ We can assume that we
have this pattern



Sketch of proof, cont.

✤ If there is a box in the tableaux, we let c be the element that first 
creates it, b the element that bumps it, d the element in (2,1) and a the 
element that bumped d

✤ Then we know that a < b,c,d and b,d < c, and that d appeared first in 
the perm, and b appeared last



Sketch of proof, cont.

✤ Recall, trying to produce

✤ Now assume b < d (other case is similar). Then we have one of:

DONE!
Dots must
increase

from red dot
DONE!

d
c

a
b

d
c

a
b
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a
b

DONE!



There seems to be more...

✤ If we create a lattice of shapes, it seems to correspond to a lattice of 
patterns



<--->



How to prove 
it?

... have some ideas but an algorithm would be better



Negativity results

✤ Some types of permutations are notoriously hard to describe and even 
to count

✤ Meanders are one example. These are encodings of flowing rivers



Output from algorithm
And this does NOT

describe meanders of
length 4 or more!



Questions?

✤ Input more datasets of permutations, generate more conjectures

✤ Try it for other properties of permutations (instead of patterns)

✤ Try it for other types of data (instead of permutations)
(Can it discover Kuratowski’s thm for graphs?)

✤ Can it be made into a theorem prover, instead of just conjecturer?
Have another algorithm that can prove special cases (also joint with 
Anders)


