
Permutation Patterns 2012, University Of Strathclyde,

Automated discovery of
permutation patterns
Henning Úlfarsson, Reykjavík University
joint work with Anders Claesson, University of Strathclyde

Origin of this talk

What do we want to do?

✤ Come up with and prove conjectures such as:

 A perm is West-2-stack-sortable if and only if it avoids

(Proved by West in his thesis, 1990)

There is a nice algorithm...

✤ ... for classical patterns: What patterns does this class avoid?

{1, 12,21, 132,213,231,312,321,
1432,2143,2413,2431,3142,3214,3241,3412,3421,4132,4213,4231,4312, ... }

✤ We scan through the list and when we see the first missing perm we
add it to the base B = {123}

✤ We keep on scanning and when we see another missing perm we
check if it contains something from the base. If not we add it to the
base. B = {123,4321}. We keep going and hope the base stops growing

✤ Note that we are using the missing perms to discover the patterns

But not everything is “classical”

✤ Sometimes a set of perms has an infinite or no basis

✤ Mesh patterns to the rescue! (Brändén & Claesson, 2010)

✤ Any set of permutations can be described by mesh patterns

Mesh patterns in permutations

✤ A few mesh patterns inside
513426

An algorithm for mesh patterns

✤ Step 1: Discover the allowed patterns
This is easy - also parallelizes beautifully!

✤ Step 2: Find forbidden patterns
This is the hard part. One way is to search through all possibilities

The search space will grow like n!*2(n+1)2

✤ Step 2’: Generate (in a smart way) the forbidden patterns.
For n = 4 this reduces the run-time from 18 hours to 0.18 seconds!

This was the first
implementation -

it was slow!

Testing, testing (sagenb.org)

✤ Stack-sortable permutations avoid (Knuth ~1960)

✤ West-2-stack-sortable perms avoid (West 1990)

✤ Factorial Schubert varieties correspond to permutations avoiding

(Bousquet-Mélou & Butler 2006)

Stack-sortable
perms

West-2-stack-sortable perms

Factorial Schubert varieties

You can play with this yourself

sagenb.org

How do we generate the
forbidden patterns?
✤ Given the allowed patterns from step 1) we generate the minimal

forbidden patterns (can’t search through all possibilities: n!*2(n+1)2)

✤ What does that mean? If the following patterns are allowed

 then step 2’) will generate two forbidden patterns.

Redundancy

✤ We generate the forbidden patterns for each length individually so
there is redundancy between different lengths

✤ We only need to remember that the smaller one is forbidden

✤ There is still some redundancy in the output which we have ideas on
how to remove (based on the shading lemma, upgrading, minimal
permutations, but current implementations are too slow)

New conjectures

✤ As shown above the algorithm can find old theorems

✤ Discovered some new conjectures: Tableaux conjectures!

✤ But first: what is a tableau

Young tableaux

✤ There is a beautiful bijection between permutations and pairs of YT’s,
e.g. 581279643 gives us (using Sage!)

✤ The bijection has several nice properties. But it has been hard to
connect patterns in permutations to something in the tableaux

✤ Only special cases are known, e.g. separable patterns (Crites, Panova
& Warrington 2011)

✤ We have some new conjectures and results

Perms with hook-shaped tableaux

✤ Theorem (HÚ & Claesson, Atkinson)
A perm has hook-shaped tableaux if and only if it avoids

As pointed out by Vince Vatter, this actually follows from
a paper by Atkinson on skew-merge perms

Sketch of proof

✤ If a perm contains the patterns
then it is not hook-shaped by a
theorem of Crites, Panova &
Warrington, 2011

✤ Assume it contains

✤ So we have either

✤ This will produce a box
in the tableaux.

✤ The other mesh pattern
is similar

Sketch of proof, cont.

✤ We can assume that we
have this pattern

Sketch of proof, cont.

✤ If there is a box in the tableaux, we let c be the element that first
creates it, b the element that bumps it, d the element in (2,1) and a the
element that bumped d

✤ Then we know that a < b,c,d and b,d < c, and that d appeared first in
the perm, and b appeared last

Sketch of proof, cont.

✤ Recall, trying to produce

✤ Now assume b < d (other case is similar). Then we have one of:

DONE!
Dots must
increase

from red dot
DONE!

d
c

a
b

d
c

a
b

d
c

a
b

DONE!

There seems to be more...

✤ If we create a lattice of shapes, it seems to correspond to a lattice of
patterns

<--->

How to prove
it?

... have some ideas but an algorithm would be better

Negativity results

✤ Some types of permutations are notoriously hard to describe and even
to count

✤ Meanders are one example. These are encodings of flowing rivers

Output from algorithm
And this does NOT

describe meanders of
length 4 or more!

Questions?

✤ Input more datasets of permutations, generate more conjectures

✤ Try it for other properties of permutations (instead of patterns)

✤ Try it for other types of data (instead of permutations)
(Can it discover Kuratowski’s thm for graphs?)

✤ Can it be made into a theorem prover, instead of just conjecturer?
Have another algorithm that can prove special cases (also joint with
Anders)

