Automated discovery of
permutation patterns

Henning Ulfarsson, Reykjavik University
joint work with Anders Claesson, University of Strathclyde

Permutation Patterns 2012, University Of Strathclyde,

Origin of this talk

Consequences of the

Lakshmibai-Sandhya Theorem

Sara Billey
University of Washington
http://www.math.washington.edu/~billey

AWM Anniversary Conference, September 18, 2011

Open Problems

1. Give a pattern based algorithm to produce the factorial and/or Gorenstein
locus of a Schubert variety.

2. Describe the maximal singular locus of a Schubert variety for other semisim-
ple Lie groups using generalized pattern avoidance.

£ 3. Find a method to “learn” marked mesh patterns by computer. }

W hat do we want to do?

* Come up with and prove conjectures such as:

A perm 1s West-2-stack-sortable if and only if it avoids

L 4 <

. 2 L 2

* *

L 4 *

(Proved by West in his thesis, 1990)

T'here 1s a nice algorithm...

+ ... for classical patterns: What patterns does this class avoid?

{1, 12,21, 132,213,231,312,321,
1432,2143,2413,2431,3142,3214,3241,3412,3421,4132,4213,4231,4312, ... }

* We scan through the list and when we see the first missing perm we
add it to the base B = {123}

* We keep on scanning and when we see another missing perm we
check if it contains something from the base. If not we add it to the
base. B = {123,4321}. We keep going and hope the base stops growing

* Note that we are using the missing perms to discover the patterns

But not everything is “classical”

* Sometimes a set of perms has an infinite or no basis
* Mesh patterns to the rescue! (Brandén & Claesson, 2010)

* Any set of permutations can be described by mesh patterns

Mesh patterns in permutations

* A few mesh patterns inside I '
513426 —1 |

/

!
\
\

- N |

Y7
\

— |
L o’

'
.

J

An algorithm for mesh patterns

* Step 1: Discover the allowed patterns

This is easy - also parallelizes beautifully! This was the first
implementation -
Step 2: Find forbidden patterns it was slow!

This is the hard part. One way is to search through all possibilities

The search space will grow like n!*20+1)

* Step 2": Generate (in a smart way) the forbidden patterns.
For n = 4 this reduces the run-time from 18 hours to 0.18 seconds!

lesting, testing (sagenb.org

Stack-sortable permutations avoid —

(Knuth ~1960)

L 4

L 2

* West-2-stack-sortable perms avoid —

L 4

L 4

(West 1990)

* Factorial Schubert varieties correspond to permutations avoiding

*

*

* -

*

*

L 4 L 4

(Bousquet-Mélou & Butler 2006)

C=35

prop = lambda x: is stack sortable(x)

A = para perms_sat_prop(C,prop)
size_of subdicts(A)

Perms of length 1 with this property are 1
Perms of length 2 with this property are 2
Perms of length 3 with this property are 5
Perms of length 4 with this property are 14
Perms of length 5 with this property are 42

ttime

StaCk- SOI‘table : :la:imum length of patterns to search for

Maximum length of permutations from A to consider.
N=C

Initializing a dictionary of good patterns that will
be learned from A
goodpatts = dict()

perms

SG = parallel guess(M,N,report=False,run_parallel=False)
visualize patts(SG,6)

CPU time: 0.63 s, Wall time: 0.63 s
4 [T ——r

Cm. 5

prop = lambda x: is West 2 stack_sortable(x)

A = para_perms_sat_prop(C,prop) West-2-stack-sortable perms
size_of subdicts(A)

Perms of length 1 with this property are 1

Perms of length 2 with this property are 2

Perms of length 3 with this property are 6

Perms of length 4 with this property are 22

Perms of length 5 with this property are 91

ftime

Maximum length of patterns to search for
M= 4

Maximum length of permutations from A to consider.
N =2C

Initializing a dictionary of good patterns that will
be learned from A
goodpatts = dict()

SG = parallel guess(M,N,report=False,run parallel=False)
visualize patts(SG,6)

CPU time: 0.98 s, Wall time: 0.98 s
§ T

4: .
3 ®

C=5

prop = lambda x: is_factorial(x)

A = para_perms_sat_prop(C,prop) FaCtOrlal SChUbert Varletles
size of subdicts(A)

Perms of length 1 with this property are 1

Perms of length 2 with this property are 2

Perms of length 3 with this property are 6

Perms of length 4 with this property are 22

Perms of length 5 with this property are 89

$time

Maximum length of patterns to search for
M =4

Maximum length of permutations from A to consider.
N=C

Initializing a dictionary of good patterns that will

be learned from A
goodpatts = dict()

SG = parallel guess(M,N,report=False,run_parallel=False)
visualize patts(SG,6)

CPU time: 0.98 s, Wall time: 0.98 s

SJVV v ™ Y v Pp—— —— 1. Svavv
b 4 s
3 4

4 o— 4]

1+ B L

You can play with this yourself

-- Sage [Q' Google

SDCJEL The Sage Notebook
Version 5.0 3 |

Welcome! “ n P Sign into the Sage Notebook v5.0

Sage is a different approach to mathematics software. Y Username

The Sage Notebook

Password

m the &w Alababanl ammiimma o . N b b mm memd suibliabh lnbacandivin vmesbiabhanto la avwmelbiabhant nnn e csmwibon mnde cunimem Conmn Didbinn R —

and other ’°'_ a|> ||| 2]+ [55] http: / /sagenb.org/pub/ — Published Worksheets -~ Sage

General = ' - e *

Use Sage fo

and exact lin¢

Usé i € Sv:?ge- The Sage Notebook
Rating Published Worksheets Owner
o deneme ws sogrekci
—ee- matexp sogrekci
—_— 110 | ML 1SR osmy
\ PP2012 J utarsson

How do we generate the
forbidden patterns?

* Given the allowed patterns from step 1) we generate the minimal
forbidden patterns (can’t search through all possibilities: n!*20+1)%)

* What does that mean? If the following patterns are allowed

then step 2’) will generate two forbidden patterns.

Redundancy

* We generate the forbidden patterns for each length individually so
there is redundancy between different lengths

* We only need to remember that the smaller one is forbidden

* There is still some redundancy in the output which we have ideas on
how to remove (based on the shading lemma, upgrading, minimal
permutations, but current implementations are too slow)

New Conjectures

* As shown above the algorithm can find old theorems
* Discovered some new conjectures: Tableaux conjectures!

+ But first: what is a tableau

Young tableaux

* There is a beautiful bijection between permutations and pairs of YT’s,
e.g. 581279643 gives us (using Sage!)

L2 3 B
6

e o LN NS I
O oo ~JWwH

* The bijection has several nice properties. But it has been hard to
connect patterns in permutations to something in the tableaux

* Only special cases are known, e.g. separable patterns (Crites, Panova
& Warrington 2011)

* We have some new conjectures and results

Perms with hook-shaped tableaux

As pointed out by Vince Vatter, this actually follows from
a paper by Atkinson on skew-merge perms

+ Theorem (HU-& Claessen, Atkinson)
A perm has hook-shaped tableaux if and only if it avoids

Sketch of proof

* If a perm contains the patterns
then it is not hook-shaped by a
theorem of Crites, Panova &
Warrington, 2011

+ Assume it contains

Sketch of proot, cont.

+ We can assume that we ®
have this pattern

+ So we have either

* This will produce a box ?
in the tableaux. r
@
* The other mesh pattern ‘.
is similar

Sketch of proot, cont.

+ If there is a box in the tableaux, we let c be the element that first
creates it, b the element that bumps it, d the element in (2,1) and a the
element that bumped d

\
of <

)

* Then we know that a <b,c,d and b,d < ¢, and that d appeared first in
the perm, and b appeared last

Sketch of proot, cont.

* Recall, trying to produce

®

&

.

* Now assume

de

L

C

&

QOr4+4

@

L

C

d

. 4

-
@

—TDON]

Aod

!

L2

b < d (other case is similar). Then we have one of:

Dots must
Increase
from red dot

There seems to be more...

« If we create a lattice of shapes, it seems to correspond to a lattice of
patterns

Pe
\ A
: -
Q‘\& N
] \}(ﬁ/(b{m\ow
AN
- V
o IJI Ojd?p\\?ﬁ
N ok J"'\"‘H‘
.
C

_+
o

How to prove

1

!

®

O 0
O O
& ®
&
o
® 4
o |0
but an algorithm would be better
4 B 4
o
@ @
L
O
o oo

Negativity results

* Some types of permutations are notoriously hard to describe and even
to count

* Meanders are one example. These are encodings of flowing rivers

Output from algorith

And this does NOT
Il describe meanders of

length 4 or more!

$time
Maximum length of patterns to search for

M =3

Maximum length of permutations from A to consider.
N = 10

Initializing a dictionary of good patterns that will
be learned from A
goodpatts = dict()

O DOV B WN -

The number of allowed patterns

SG = parallel guess(M,N,report=True,run_parallel=False) The number of allowed patterns
3 oy 4 4 P 4 prepre 4 4 g ap 4 4 "
250 ‘ i '

o) 3 3 3 3 3 3 3 3
15} i2 2f <2 2 24 2@ 2t 2 :
!]

Smnelia it astasanhns nintr huarshnstatnass
o 1 1 1 o 111 o 0 x 0 z 0 111 IAAo AA.O 111 o
0051152253 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 012 3 40123 401234012 3 4
4P 4 PR 4 4 Y 4 P 4P 4 4 4
3f 3 3-‘ 3—‘ 3 3 3 3 ‘—3_
2t 9-: 9-: : 2 2 2 <2 b : 2 2p
1} ’ 1 ’ {1 1 1—’ 1—* 1 1 1
0 0 — 0 0 0 0 0 0 0
01 2 34012380 3 2 3 A0 1234012 34 0L 23 40172 340012 3 4
4 4p 4 P 4 oy 4 4 4 4 4
3 ‘-3 ‘ 3 3 3 3 3—‘ 3 3—‘—
2f 2 2-, 2t 2f 2f 9-: 2 2 :
1 1 {1 ?—1' 1 ?—1 ? {1 1 1
0 2 0 12 0 0 . 0 0 ~d o 1 0 11 0 1ry
D12 S A0: 12398012 3 4012380123 840%1 2340123 40:1234012234

Starting search for allowed patterns of lengths 1...3
Only need to consider patterns of lengths 2...3

Now looking at permutations of length

of length 2 is 4
of length 3 is 74

allowed patterns

of length 2 is now 4
of length 3 is now 74

patterns of lengths 1...3
length 1 is 0

length 2 is 1

length 3 is 207

»rbidden patterns

(1, 1), (0, 2)})
0), (1, 3), (3, 1), (2,
3), (3, 1), (0, 2), (2,
0), (1, 3), (1, 1), (O,
0), (3, 1), (1, 1), (0,
o)l (ol 3)' (ll 0)' (21
0), (0, 3), (3, 2), (2,
2), (0, 1), (1, 0), (2,
2), (0, 1), (3, 2), (2,
0), (1, 2), (0, 3), (O,
)7 (25 2)s [0 3)s (2>

W WWHEMHNNNN
N N N N N N N -
e e e i e e e e e
N N N N N N N S S

(Questions?

* Input more datasets of permutations, generate more conjectures
* Try it for other properties of permutations (instead of patterns)

* Try it for other types of data (instead of permutations)
(Can it discover Kuratowski’s thm for graphs?)

* Can it be made into a theorem prover, instead of just conjecturer?
Have another algorithm that can prove special cases (also joint with

Anders)

