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I This is joint work with Taylor Allison, North Carolina State
University; Katie Hawley, Harvey Mudd College/University of
Oregon; and Bill Kay, University of South Carolina/Emory
University.

I One of the problems discussed today was posed by Professor
Robert Brignall during the Open Problem Session at the
International Permutation Patterns Conference held at
California State Polytechnic University in June 2011.
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The problem

I Let Sn be the set of all permutations on [n] := {1, 2, . . . , n}.
We denote by κn the smallest cardinality of a subset A of
Sn+1 that “covers” Sn, in the sense that each π ∈ Sn may be
found as an order-isomorphic subsequence of some π′ in A.
[We similarly define κn,k but will not consider these numbers
today.] What are general upper bounds on κn? If we
randomly select νn elements of Sn+1, when does the
probability that they cover Sn transition from 0 to 1? Can we
provide a fine-magnification analysis that provides the
“probability of coverage” when νn is around the level given by
the phase transition? In this talk we answer these questions
and raise others.
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Easy Results

I Small values are easy to calculate; e.g., it is easy to see that
κ1 = 1, κ2 = 1, and the permutation set {1342, 4213} reveals
that κ3 = 2 – but the situation rapidly gets out of precise
control.

I Pigeonhole bound: Clearly,

I

(κn)

(
n + 1

n

)
≥ n!, so that

I

κn ≥
(n + 1)!

n2
(1 + o(1)).
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A Lemma

Lemma
Let c(n, π) denote the number of permutations in Sn+1 that cover
a fixed π ∈ Sn. Then c(n, π) = c(n, π′) = n2 + 1 for each
π, π′ ∈ Sn.

Proof.
It is clear that any permutation pattern π ∈ Sn may be realized in(n+1

n

)
= n + 1 ways, one for any choice of n numbers from [n + 1].

Arrange these ways lexicographically (for example if n = 3, we can
realize the pattern 132 as 132, 142, 243, and 143, or,
lexicographically, as 132, 142, 143, 243). Note that the rth and
r + 1st lex-orderings of π differ in a single bit.
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Proof Continued

Now, given any realization of π, the n + 1st letter may clearly be
inserted in (n + 1) ways to create an (n + 1)- covering
permutation; however, for any 1 ≤ r ≤ n − 1, the list of covering
(n + 1)-permutations for the rth and r + 1st lex-orderings have an
overlap of magnitude 2, corresponding to whether the (n + 1)st
letter is inserted before or after the non-matching bit. Thus
c(n, π) = c(n, π′) = (n + 1)2 − 2n = n2 + 1, as asserted.
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A Theorem

Theorem

κn ≤
log n

n2
(n + 1)!(1 + o(1)).

Proof.
We use the “method of alterations” as follows: Choose a random
number Y of (n + 1)-permutations by “without replacement”
sampling. The expected number E(X ) of uncovered
n-permutations can easily be calculated and estimated as

E(X ) = n!

((n+1)!−n2−1
Y

)((n+1)!
Y

) ≤ n! exp{−Y (n2 + 1)/(n + 1)!.
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Proof, continued

We choose a realization with X = XY ≤ E(X ) and cover these
with at most E(X ) additional (n + 1)-permutations, yielding, for
any initial size Y , a covering with at most

Y + n! exp{−Y (n2 + 1)/(n + 1)!}

members. Minimizing over Y yields an initial choice of size

(n + 1)!

(n2 + 1)
log

(
n2 + 1

n + 1

)
,

and an upper bound of

κn ≤
(n + 1)!

(n2 + 1)

(
1 + log

(
n2 + 1

n + 1

))
=

log n

n2
(n + 1)!(1 + o(1)),

as claimed.
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Lower linear cost of additional coverings

I Theorem
Let κn,λ denote the minimum number of (n + 1)-permutations
needed to cover each n-permutation λ ≥ 2 times. Then,

κn,λ ≤
(n + 1)!

n2
(log n + (λ− 1) log log n + O(1)) .

I There are parallels to this, e.g. Covering Designs; Coupon
Collection

I A discussion of a parallel set of results on asymptotic
coverings....
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Covering Designs Analogy

I A collection A of sets of size k of [n] is said to form a
t-covering design if each t-set is contained in at least one
k-set in A.

I If m(n, k, t) denotes the smallest size of a t-covering design A
then it is clear that m(n, k, t) ≥

(n
t

)
/
(k
t

)
;

I Erdős and Spencer proved in 1968 that ∀n, k, t,

m(n, k, t) ≤
(n
t

)(k
t

) (
1 + log

(
k

t

))
;

I It was shown furthermore by G, Thompson, Vigoda, that the
minimum number m(n, k, t, λ) of k-sets needed to cover each
t-set λ times satisfied

m(n, k, t, λ) ≤
(n
t

)(k
t

) (
1 + log

(
k

t

)
+ (λ− 1) log log

(
k

t

)
+ O(1)

)
,

n, k, t →∞.
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Analogy, contd...

I This was the log log result.

I Also, the Erdős-Hanani conjecture, namely that for fixed k, t,

lim
n→∞

m(n, k, t)(n
t

) =
1(k
t

)
was proved by V. Rödl and, later, by J. Spencer.
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Hypergraph Formulation

We now describe the hypergraph formulation of
Pippenger/Spencer that was used in Spencer to prove the
Erdős-Hanani conjecture using a method that involved branching
processes, dynamical algorithms, hypergraph theory, and
differential equations. In this formulation the vertices of the
hypergraph consisted of the ensemble of t-sets; for us they would
be the class of permutations in Sn. The edges in Spencer’s paper
were the collections of t-subsets of the k-sets, so that the
hypergraph was

(k
t

)
uniform. If analogously, we let edges be the

set of n-permutations covered by an (n + 1)-permutation, then the
hypergraph is no longer uniform. It is not too hard to prove,
however, that each (n + 1)-permutation π covers n + 1− sπ
n-permutations, where sπ is the number of successions in π, where
a succession is defined as an episode π(i + 1) = π(i)± 1.
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Hypergraphs, continued

Moreover, we know (G&Sissokho) that the number of successions
in a random permutation is approximately Poisson with parameter
∼ 2, so that it is reasonable to assert that most hypergraph edges
consist of n − O(1) vertices. This is the first deviation from the
Pippenger model, which we consider to be not too serious insofar
as the lack of uniformity of the hypergraph is concerned but rather
serious due to the fact that the uniformity level n − O(1) is not
finite. The lemma proven above shows that the degree of each
vertex is O(n2), and we will also prove below that the codegree of
two vertices π and π′ is at most O(1), so that the codegree is an
order of magnitude smaller than the degree. This is good. The
above problems with the hypergraph formulation notwithstanding,
we make the following conjecture:
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Conjecture

I Conjecture

For some constant A,

lim sup
n→∞

κn

(n + 1)!/n2
= A,

and possibly A ≤ 2.

I Is lim sup = lim?

I Is A = 1? Is A ≤ 2?
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A Key Lemma

Lemma
For any π ∈ Sn, the set

Jπ := {π′ ∈ Sn : π and π′ can be jointly covered by ρ ∈ Sn+1}

has cardinality at most n3. Moreover, for any π, π′ ∈ Sn+1, the
cardinality of

Cπ,π′ := {ρ ∈ Sn+1 : ρ covers both π and π′}

is at most 4.
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Methods used in Proof of 2nd part of the Lemma

I Interestingly, in the sequel, we only need the above codegree
to be o(n2), but work hard in the paper (5.5 pages) to show
that the answer is O(1)=4...perhaps because

I The proof of the conjecture may need us to have the codegree
being really small, and

I The generalizations to κn,k may need a similar analysis.

I The proof used string matching ideas, longest common
matches, and some “geometry of matching.” It is long but not
hard.
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Proof of first part of the Lemma

Proof.
Fix π. For an (n + 1)-permutation to be able to successfully cover
another π′ ∈ Sn (in addition to π), π must contain an
(n − 1)-subpattern of π′. This subpattern may be present in( n
n−1

)
= n possible positions of π, and can be represented, using

the numbers {1, 2, . . . , n} in n ways. Finally, the nth letter of π′

can be inserted into this subpattern in n ways. This proves the first
part of the lemma.
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Threshold

Theorem
Consider the probability model that chooses each ρ ∈ Sn+1 with
probability p, independently. Then,

p ≤ log n

n
(1 + o∗(1)) ⇒ P(A is a cover of Sn) → 0 (n →∞),

and

p ≥ log n

n
(1 + o(1)) ⇒ P(A is a cover of Sn) → 1 (n →∞).
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Poisson Distribution

In fact, if

p =
log n − 1 + 1

2
log n

n − K
n

n
,K ∈ R,

then E(X ) = e−K and P(X = 0) = exp{−e−K}. Much more is
true: The entire probability distribution L(X ) of X can be
approximated by a Poisson random variable with mean λ = E(X )
in a range of ps that allows for large means.

Theorem
Consider the model in which each π ∈ Sn+1 is independently
chosen with probability p, thus creating a random ensemble A of
(n + 1)-permutations. Then dTV(L(X ),Po(λ)) → 0 if
p ≥ log n

n2 (1 + ε), where Po(λ) denotes the Poisson distribution with
parameter λ, ε > 0 is arbitrary, and the total variation distance
dTV is as usual.

Anant Godbole, East Tennessee State University Covering n-permutations by (n + 1)- (or (n + k)-permutations


	Outline
	Collaborators
	Bounds
	Probabilistic Results

