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The Möbius function

Given a locally finite poset P , its Möbius function is defined as

µ :P × P −→ C

:(x , x) 7−→ 1,

:(x , y) 7−→ −
∑

x≤z<y

µ(x , z) = −
∑

x<z≤y

µ(z , y) (x 6= y)

Note that µ(x , y) = 0 if x 6≤ y .
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The pattern poset

Given permutations σ, τ , we say that σ = a1 · · · ak occurs as a pattern in
τ = b1 · · · bn whenever there exists a set of k elements of τ , say
{bi1 , · · · bik}, appearing in τ in the above order, whose elements appear in
the same order of size as the elements of σ.

Example. σ = 231 appears 8 times in τ = 253641.

The problem of the computation of the Möbius function in the pattern
poset (posed by Wilf) is still open in its full generality.
Partial results are due to Sagan and Vatter (2006), Steingŕımsson and
Tenner (2010) and Burstein, Jeĺınek, Jeĺınkova and Steingŕımsson (2011).
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The consecutive pattern poset

A permutation σ occurs in a permutation τ as a consecutive pattern
when there is an occurrence of σ in τ made of consecutive elements of τ .

We set σ ≤ τ when σ occurs in τ as a consecutive pattern, and denote
with P the resulting poset.

Example. σ = 231 doesn’t appear in τ = 253641 as a consecutive
pattern, whence σ 6≤ τ .

Note that P is a ranked poset, and r(π) is given by the number of
elements of π.
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The Möbius function
The pattern poset
The consecutive pattern poset

The consecutive pattern poset

A permutation σ occurs in a permutation τ as a consecutive pattern
when there is an occurrence of σ in τ made of consecutive elements of τ .

We set σ ≤ τ when σ occurs in τ as a consecutive pattern, and denote
with P the resulting poset.

Example. σ = 231 doesn’t appear in τ = 253641 as a consecutive
pattern, whence σ 6≤ τ .

Note that P is a ranked poset, and r(π) is given by the number of
elements of π.
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Our problem

Given σ, τ ∈ P such that σ ≤ τ , we wish to compute

µ(σ, τ).

The computation of µ(σ, τ) depends on how many occurrences of σ
appear in τ .

If τ contains a single occurrence of σ, µ(σ, τ) is easily worked out.

If τ contains two or more occurrences of σ, we provide a recursive
procedure to find µ(σ, τ).
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A useful fact

Observe that, given τ ∈ P, it is not difficult to understand the set of
elements of P which are covered by τ .

In fact, “going down” in P essentially means deleting one element from
one tail of τ (and then renaming the remaining ones to get a
permutation). Thus

if τ is a monotone permutation, then it covers only one element
(which is in turn a monotone permutation);

otherwise, τ covers precisely two elements.
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The case of one occurrence

1 2 3

5 6 4

1 2 35 4

1 2 34

1 3 46 7 5 2

1 3 4 26 5 

1 3 45 2

1 3 4 2

1 3 4 2 5 

1 3 4 2 65

1 3 46 8 5           2 7

7 5 1 3 4 2 6

1 2 3

A. Bernini L. Ferrari E. Steingŕımsson The Möbius function of the consecutive pattern poset



Outline
Preliminary notions

Our problem
The case of one occurrence
More than one occurrence

Further work

The case of one occurrence

Theorem

Suppose σ occurs precisely once in τ , and that τ has tails of lengths a
and b, respectively. Then µ(σ, τ) = 1 if a = b = 0 or a = b = 1, and
µ(σ, τ) = −1 if a = 0, b = 1, or a = 1, b = 0. Otherwise, µ(σ, τ) is 0.
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Small intervals

Lemma

Suppose σ occurs in τ and that r = |τ | − |σ| ≤ 2. Then, if r = 0,
µ(σ, τ) = 1. If r = 1, we have µ(σ, τ) = −1. If r = 2, then µ(σ, τ) = 0 if
τ (and thus also σ) is a monotone permutation, otherwise µ(σ, τ) = 1.

Proof.

r = 0: σ = τ

µ(σ, τ) = 1

r = 1: τ

σ

µ(σ, τ) = −1

r = 2: a) τ monotone τ

σ

µ(σ, τ) = 0

a) τ not monotone τ

σ

µ(σ, τ) = 1
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Interior of a permutation

Given τ , define:

′τ : obtained from τ by removing the first letter

τ ′: obtained from τ by removing the last letter
′τ ′: obtained from τ by removing the first and the last letter

′τ ′ will be called the interior of τ .

Example. τ = 68513427  ′τ = 7513426, τ ′ = 6751342 and
′τ ′ = 651342.
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A. Bernini L. Ferrari E. Steingŕımsson The Möbius function of the consecutive pattern poset



Outline
Preliminary notions

Our problem
The case of one occurrence
More than one occurrence

Further work

Special cases
The general case
Consequences

Interior of a permutation

Given τ , define:

′τ : obtained from τ by removing the first letter

τ ′: obtained from τ by removing the last letter
′τ ′: obtained from τ by removing the first and the last letter

′τ ′ will be called the interior of τ .

Example. τ = 68513427  ′τ = 7513426, τ ′ = 6751342 and
′τ ′ = 651342.
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Permutations without interior

It τ has no interior in [σ, τ ], then it is easy to compute µ(σ, τ).

Lemma

Suppose σ occurs at least twice in τ and that |τ | − |σ| ≥ 3. If ′τ ′ does
not lie in [σ, τ ], we have µ(σ, τ) = 1.

Proof.

1

0 0

−1 −1

1
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Prefixes, suffixes, bifixes...

From now on, we will suppose that

|τ | − |σ| ≥ 3
′τ ′ ∈ [σ, τ ]

To deal with the remaining cases, we need some definitions.

Given a permutation τ , its prefix (resp. suffix) pattern of length k is the
permutation of length k order isomorphic to the prefix (resp. suffix) of τ
of length k . In case the prefix and suffix patterns of length k of τ
coincide, we say that τ has a bifix pattern of length k .

Example. π = 68513427;

231 is the prefix pattern of π of length 3

213 is the suffix pattern of π of length 3

π = 431825976 has a bifix pattern of length 3, which is 321.
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A crucial lemma

Lemma

Given σ and τ in P, let

′C = {ρ ∈ [σ, τ ] | ρ < ′τ , ρ 6≤ ′τ ′}

and let
C ′ = {ρ ∈ [σ, τ ] | ρ < τ ′, ρ 6≤ ′τ ′}.

The sets ′C and C ′ are chains, and ′C ∩ C ′ has at most one element.
Moreover, if z ∈ C ′ \ ′C or z ∈ ′C \ C ′ then [z , τ ] is a chain.
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Proof.

ρ ∈ ′C ⇒ ρ � ′τ ′ ⇒ ρ is a suffix pattern of τ ⇒ ′C is a chain

ρ ∈ C ′ ⇒ ρ � ′τ ′ ⇒ ρ is a prefix pattern of τ ⇒ C ′ is a chain

τ

′
τ τ

′

x
y

′C C ′

′C ∩ C ′

σ

y y y y

x x

τ

y ≤ ′τ ′, a contradiction.
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The carrier element

Given σ ≤ τ , if ′C ∩ C ′ is nonempty, let {C} = ′C ∩ C ′. C is called the
carrier element of [σ, τ ].

τ

′
τ τ

′

′
τ
′

C

σ
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The main recursion

Theorem

Suppose τ has at least two occurrences of σ and that |τ | − |σ| ≥ 3.
Assume that ′τ ′ lies in [σ, τ ]. Then, if [σ, τ ] has no carrier element, we
have µ(σ, τ) = 0. Otherwise, µ(σ, τ) = µ(σ, C).

Proof. We compute µ(σ, τ) from top to bottom.

z ∈ (C ′ \ ′C ) ∪ (′C \ C ′) ⇒ µ(z , τ) = 0.

If C doesn’t exist, then y < ′τ ′ ⇒ µ(y , τ) = 0 (whence µ(σ, τ) = 0).
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If C exists, then

µ(σ, τ) = −
∑

σ<z≤τ

µ(z , τ) =(∗) −
∑

σ<z≤C

µ(z , τ)

(*) z � C ⇒ µ(z , τ) = 0
When z ≤ C, we get

µ(z , τ) = −
∑

z<t≤τ

µ(t, τ) =(∗) −
∑

z<t≤C

µ(t, τ)

=(use induction) −
∑

z<t≤C

µ(t, C) = µ(z , C)

whence

µ(σ, τ) = −
∑

σ<z≤C

µ(z , τ) = −
∑

σ<z≤C

µ(z , C) = µ(σ, C)
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The main consequence of the main recursion

As a consequence of the previous theorem, we can prove that µ(σ, τ) = 0
happens very often.

Corollary

Suppose σ occurs in τ but that the first two (or the last two) letters of τ
are not involved in any occurrence of σ. Then µ(σ, τ) = 0.

For the proof, just compute the carrier element C of [σ, τ ], then the
carrier element of [σ, C], and so on, until we get C′ ∈ [σ, τ ] such that
[σ, C′] has no carrier element. Such a C′ is called the socle of [σ, τ ].
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Some examples

1

σ = 321
τ = 431825976

 C = 321 = σ ⇒ µ(σ, τ) = µ(σ, σ) = 1

2

σ = 231
τ = 25 7 1 4 8 9 3 6 10

 C = 245136 ⇒ µ(σ, τ) = µ(σ, C)

However [σ, C] has no carrier element (that is, C is the socle of
[σ, τ ]), and so µ(σ, C) = 0 (since |C| − |σ| = 3 ≥ 3).
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Further consequences

Our results allow us to recursively compute µ(σ, τ).

However, it would be nice to deduce µ(σ, τ) from a simple inspection of
the permutations σ and τ .

In this direction, we only have some partial results, which we list below.

In the following, we denote with x the sum of the lengths of the tails of τ
with respect to σ. So x = 0 means that τ has two occurrences of σ, one
at each end; x = 1 means that τ has one occurrence of σ at one end and
a tail of length 1 at the other end; finally, x = 2 means that τ has two
tails of length 1 each.

For simplicity, in what follows we will always assume that, when x = 1, τ
has an occurrence of σ at its right end (and thus a tail of length 1 at its
left end). In case σ appears at the left end of τ , we simply have to
replace each occurrence of the word “suffix” with the word “prefix” in all
the following propositions.
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Further consequences

Our first result says that it is very difficult for the Möbius function to
take the value (−1)x+1.

Proposition

1. Suppose x = 0. If τ does not have a monotone bifix of length
|σ|+ 1, then µ(σ, τ) 6= −1.

2. Suppose x = 1. If τ does not have a bifix of length |σ|+ 2 whose
suffix of length |σ|+ 1 is monotone, then µ(σ, τ) 6= 1.

3. Suppose x = 2. Then µ(σ, τ) 6= −1.

In this direction, a general result that includes all the cases of (but is
weaker than) the previous proposition is the following.

Proposition

If τ has a non-monotone suffix of length |σ|+ x, then µ(σ, τ) 6= (−1)x+1.
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|σ|+ 1, then µ(σ, τ) 6= −1.

2. Suppose x = 1. If τ does not have a bifix of length |σ|+ 2 whose
suffix of length |σ|+ 1 is monotone, then µ(σ, τ) 6= 1.

3. Suppose x = 2. Then µ(σ, τ) 6= −1.

In this direction, a general result that includes all the cases of (but is
weaker than) the previous proposition is the following.

Proposition

If τ has a non-monotone suffix of length |σ|+ x, then µ(σ, τ) 6= (−1)x+1.
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take the value (−1)x+1.

Proposition

1. Suppose x = 0. If τ does not have a monotone bifix of length
|σ|+ 1, then µ(σ, τ) 6= −1.

2. Suppose x = 1. If τ does not have a bifix of length |σ|+ 2 whose
suffix of length |σ|+ 1 is monotone, then µ(σ, τ) 6= 1.

3. Suppose x = 2. Then µ(σ, τ) 6= −1.

In this direction, a general result that includes all the cases of (but is
weaker than) the previous proposition is the following.

Proposition

If τ has a non-monotone suffix of length |σ|+ x, then µ(σ, τ) 6= (−1)x+1.
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A. Bernini L. Ferrari E. Steingŕımsson The Möbius function of the consecutive pattern poset



Outline
Preliminary notions

Our problem
The case of one occurrence
More than one occurrence

Further work

Special cases
The general case
Consequences

Further consequences

Next we give an easy sufficient condition in order to have µ(σ, τ) = 0.
For this, we first need a definition.

A permutation is said to be monotone (reverse) alternating when it is
(reverse) alternating and the two permutations induced by its
even-indexed elements and odd-indexed elements are both monotone. For
instance, the permutation 342516 is monotone alternating.
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Proposition

1. Suppose x = 0 and that σ is not the socle of [σ, τ ]. If τ has neither
a monotone bifix of length |σ|+ 1, nor a monotone (reverse)
alternating bifix of length |σ|+ 2, then µ(σ, τ) = 0.

2. Suppose x = 1. If τ has neither a bifix of length |σ|+ 1 nor a bifix
of length |σ|+ 2 whose suffix of length |σ|+ 1 is monotone, then
µ(σ, τ) = 0.

3. Suppose x = 2. If τ does not have a bifix of length |σ|+ 2, then
µ(σ, τ) = 0.
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A general result in this direction is the following.

Proposition

Denote with ω the longest bifix of τ containing σ and having length
≤ |σ|+ 2. Moreover, denote with α (resp. β) the shortest prefix (resp.
suffix) pattern of τ containing the first (resp. last) two occurrences of ω.
If ω exists and α 6= β, then µ(σ, τ) = 0.
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We point out that our work shows striking analogies with that of Björner
in A. Björner, The Möbius function of factor order, Theoretical Computer
Science, 117 (1993) 91-98.

This comes as no surprise, since factor order on words is very similar to
consecutive pattern containment in permutations.

However, we have still not been able to find a common generalization... .
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... but someone else has...!
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In fact, Bruce Sagan and Robert Willenbring (2011) have been able to
construct a sequence of posets interpolating between factor order on the
positive integers and a poset containing the consecutive pattern poset
(which is embedded as a convex subposet, so the Möbius functions is the
same).

All these posets have Möbius functions satisfying the same recursion.
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There is also another interesting results from Sagan and Willenbring
which gives suggestions for further research.

Proposition

(Sagan and Willenbring, 2011) Let A = {a, b}. There is an order
isomorphism from the poset A∗ endowed with the factor order to the
subposet of the consecutive pattern poset consisting of all permutations
that avoid the patterns 213 and 231.

So, what about factor order on alphabet of cardinality greater than 2? Is
it possible to find an order isomorphism with suitable subposets
(hopefully described in terms of avoidance of patterns) of the consecutive
pattern poset?
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