Generating functions for permutations with no consecutive pattern matches within the cycles

Miles Jones (University of California, San Diego)

Given a sequence $\sigma = \sigma_1 \dots \sigma_n$ of distinct integers, let $\operatorname{red}(\sigma)$ be the permutation found by replacing the *i*th largest integer that appears in σ by *i*. For example, if $\sigma = 2.7.5.4$, then $\operatorname{red}(\sigma) = 1.4.3.2$. Let Υ be a set of permutations and let σ be a permutation in S_n with *k* cycles $C_1 \dots C_k$. Then we say that σ has a cycle Υ -match (c- Υ -match) if there exists an *i* such that $C_i = (c_{0,i}, \dots, c_{p_i-1,i})$ and an *r* such that $\operatorname{red}(c_{r,i} \dots c_{r+j-1,i}) \in \Upsilon$ where we take indices of the form r + s modulo p_i . Let $\mathcal{NCM}_n(\Upsilon)$ be the set of all permutations $\sigma \in S_n$ such that σ has no cycle Υ -match. We have been able to get closed form generating functions of the following form for certain sets of patterns Υ .

$$NCM_{\Upsilon}(t) = \sum_{n \ge 0} \frac{t^n}{n!} |\mathcal{NCM}_n(\Upsilon)|$$

Results: Let Γ be the set of all permutations $\sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \in S_5$ such that

$$\sigma_1 < \sigma_2 > \sigma_3 < \sigma_4 > \sigma_5.$$

Let $\Upsilon_1 = \Gamma \cup \{1234\}$ then

$$NCM_{\Upsilon_1}(t) = \frac{2e^{t^2/2}e^{t^4/12}}{2 - 2t + t^2e^{-t}}$$

Let $\Upsilon_2 = \Gamma \cup \{132, 1234\} = \{132, 1234, 35241, 45231, 34251\}$ then

$$NCM_{\Upsilon_2}(t) = \frac{2e^t e^{t^2/2}}{4 - 2e^t + t^2 + 2t}$$

Let $\Upsilon_3 = \Gamma \cup \{231, 1234\} = \{231, 1234, 13254, 14253, 15243\}$ then

$$NCM_{\Upsilon_3}(t) = \frac{e^t e^{t^2/2}}{-1 - t + 2e^t - te^t}$$