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Permutations that separate close elements
Simon R. Blackburn
s.blackburn@rhul.ac.uk

Royal Holloway University of London

(This talk is based on joint work with Tuvi Etzion.)

Look at the diagram below. It is drawn on an n x n torus (here with n = 40). There are
n non-overlapping 6 X 6 squares; more generally, we will consider rectangles that are s
cells wide and k cells high. The dots in the lower left-hand corners form a permutation:
there is one dot in each row and each column. For fixed n and k, what is the largest value
o(k,n) of s where such a construction is possible?

'.:L°if

I proved (J.Combin. Theory Ser. A, 2023) that o(n, k) can only take one of two values:
o(n, k)€ {l(n—1)/k] —1,[(n—1)/k]}. This establishes a conjecture of Mammoliti and
Simpson from 2020. Tuvi Etzion and I have recently shown which of these two values
o(n, k) takes, determining the value of o(n, k) for all values of n and k. In this talk, I will
discuss these results and some of the techniques we use.



Combinatorial moment sequences
Natasha Blitvié

n.blitvic@gmul.ac.uk
Queen Mary University of London

(This talk is partly based on joint work [1, 2] with Einar Steingrimsson and Slim
Kammoun.)

Take your favorite integer sequence. Is this sequence a sequence of moments of some
probability measure on the real line? We will look at a number of interesting examples
(some proven, others merely conjectured) of moment sequences in combinatorics. We will
consider ways in which this positivity may be expected (or surprising!), the methods
of proving it, and the consequences of having it. The problems we will consider will be
very simple to formulate, but will take us up to the very edge of current knowledge in
combinatorics, ‘classical’ probability, and noncommutative probability.

[1] N. Blitvié¢ and E. Steingrimsson, Permutations, Moments, Measures. Transactions of the American
Mathematical Society, Vol. 374, Number 8, August 2021, pp. 5473-5509.

[2] N. Blitvié, S. M. Kammoun, E. Steingrimsson. A new perspective on positivity in (consecutive)
permutation patterns. Proceedings of the FPSAC 2023, July 17-21, Davis CA.



Well-quasi-ordering permutations
Robert Brignall
Robert.Brignall@open.ac.uk
The Open University

(This talk is based on joint work with Vincent Vatter.)

The study of well-quasi-ordering in combinatorics includes some of the most celebrated
results of the past 70 years, including Higman’s Theorem, Kruskal’s Tree Theorem and
Robertson & Seymour’s Graph Minor Theorem. The general set-up is to consider a family
of combinatorial structures (such as graphs or permutations), and some form of ordering
on this family (typically an embedding of smaller structures into larger ones, such as
graph minor, induced subgraph, or permutation containment). Such an ordered family is
well-quasi-ordered (wqo) if it contains no infinite antichains — that is, an infinite set of
structures no two of which are comparable in the ordering.

The combinatorial structure of choice for most of this talk is the permutation, equipped
with containment (which is the natural ‘induced substructure’ order). We know of an
abundance of different infinite antichains of permutations (so the set of all permutations
is certainly not wqo), but mostly researchers are interested in sets (or classes) which
comprise the permutations that avoid some given set. Here we can ask: is a given class
wqo?

This talk will survey recent developments in wqo for permutations, and the relationship
with other notions of interest (such as the enumeration of permutation classes). A class
being wqo is often seen as an indicator that the class is ‘tame’ (whereas those with infinite
antichains are ‘wild’), although a recent result (involving uncountably many different wqo
classes of permutations) suggests that wqo classes are not as tame as we might have hoped.
On the other hand, a stronger notion, known as labelled well-quasi-ordering, perhaps offers
a better guarantee of ‘tameness’.



Conjugacy, languages and groups
Gemma Crowe
ggc2000@hw. ac.uk

Heriot-Watt University

Formal language theory has found surprising applications in group theory in recent years.
In this talk, we will introduce languages associated to conjugacy classes. By studying
properties of these languages, we will explore what this tells us about counting conjugacy
classes in a group. Finally, we will consider if and when certain properties of these lan-
guages can be extended via quasi-isometries, including recent work on virtual right-angled
Artin groups.



Laguerre digraphs and continued fractions
Bishal Deb
bishal.deb.19@ucl.ac.uk
University College London

(This talk is based on joint work with Alexander Dyachenko, Matthias Pétréolle, Alan
Sokal.)

A Laguerre digraph is a directed graph on n vertices such that each vertex has indegree 0
or 1 and outdegree 0 or 1. Thus, the connected components are either directed cycles or
directed paths. They are a combinatorial interpretation of the coefficients of the Laguerre
polynomials. A Laguerre digraph with no directed paths and only directed cycles is simply
the digraph of a permutation in cycle notation. We will begin by introducing Laguerre
digraphs.

We then introduce Flajolet’s combinatorial theory of continued fractions and state a
continued fraction identity for the series >~ n! due to Euler (1760). There are several
proofs known for this identity; our work focuses on two bijective proofs due to Foata—
Zeilberger (1990) and Biane (1993).

In a series of recent papers with Dyachenko, Pétréolle and Sokal, we have analysed the
intermediate steps in the Foata—Zeilberger and Biane bijections. The “Biane history”
involves building up a Laguerre digraph by inserting vertices at each stage, whereas the
“Foata—Zeilberger history” involves building up a Laguerre digraph by inserting edges at
each stage. We will show simple examples to illustrate both histories without going into
any technical details.

In [1], we solved conjectured continued fractions due to Randrianarivony—Zeng (1996),
Sokal-Zeng (2022), and Deb-Sokal (arxiv:2022) using the Foata—Zeilberger history. In
3, 2], we extended various permutation statistics to Laguerre digraphs and used them
along with the Biane bijection to combinatorially interpret the Stieltjes—Rogers matrices
of Sokal-Zeng’s second continued fraction for permutations. This approach also partly
helps in solving a conjecture of Corteel-Sokal (2017) on the Hankel total-positivity of the
Laguerre polynomials. We will end the talk by quickly stating some of these results.

No prerequisites will be required for this talk.

[1] B. Deb, Continued fractions using a Laguerre digraph interpretation of the Foata—Zeilberger bijec-
tion and its variants, in preparation.

[2] B. Deb, A. Dyachenko, M. Pétréolle and A.D. Sokal, Lattice paths and branched continued fractions
IIT: Generalizations of the Laguerre, rook and Lah polynomials, in preparation.

[3] B. Deb, A.D. Sokal, Continued fractions for cycle-alternating permutations,
arXiv preprint: https://arxiv.org/abs/2304.06545



Cops-and-robbers on multilayer graphs
Jess Enright
Jessica.Enright@glasgow.ac.uk
University of Glasgow

(This talk is based on joint work with Kitty Meeks, Will Pettersen and John Sylvester.)

I will describe the game of cops-and-robbers and then its generalisation to multilayer
graphs. In this setting, a graph consists of a single set of vertices with multiple (potentially
intersecting) edge sets. We allow the cops and robber to move only on their assigned layer,
and ask if the cops can be guaranteed to catch the robber in finite time. Using several
examples, I'll show that initial intuition about the best way to allocate cops to layers is
not always correct. I will outline arguments showing that the number of cops required
to catch a robber in a multilayer graph is neither bounded from above nor below by
any function of the cop numbers of the individual layers. Additionally, we’ll talk about
a question of worst-case division of a simple graph into layers: given a simple graph G,
what is the maximum number of cops required to catch a robber over all multilayer graphs
where each edge of GG is in at least one layer and all layers are connected? For cliques,
suitably dense random graphs, and graphs of bounded treewidth, we have determined
this parameter up to multiplicative constants. Lastly I'll outline a multilayer variant of
Meyniel’s conjecture, and show the existence of an infinite family of graphs whose multi-
ayer cop number is bounded from below by a constant times n/logn, where n is the
number of vertices in the graph.



Submodular maximization over easy knapsack constraints
Akshay Gupte

akshay.gupte@ed.ac.uk

School of Mathematics, University of Edinburgh

A submodular function over the {0, 1} lattice is regarded as a discrete analog of a con-
vex function, and appears commonly in many combinatorial optimization problems. It
can be minimised in polynomial-time, but maximisation is NP-hard although it is 1/2-
approximable. Many approximation algorithms are known for maximising over different
classes of independence families, such as constant number of matroids and <-knapsacks.
We consider the question over the intersection of an independence family with a collec-
tion of <- and >-knapsacks that satisfy a certain property that is related to integrality
of their covering polytope and their clutters. The feasible points in these knapsacks can
be obtained by monomial orderings of binary vectors. We show that when k& (number of
knapsacks) is bounded by a constant then the maximum can be approximated to the same
factor as that for submodular maximisation over the independence family. We also give
a lower bound on approximability by establishing that there does not exist a randomised
algorithm with approximation factor roughly Q(v/k/2'°¢™). This is established by show-
ing reducibility of a large class of cardinality maximization problems to a combinatorial
question that we propose for ordering integers under different permutations.



Between Subgraph Isomorphism and Maximum Common
Subgraph, How to make faster algorithms

Ruth Hoffmann

rh3470@st-andrews.ac.uk
University of St Andrews

(This talk is based on joint work with Mun See Chang, Ciaran McCreesh and Craig
Reilly.)

The subgraph isomorphism problem looks at finding a small pattern graph inside a larger
target graph. Whereas when a small pattern graph does not occur inside a larger target
graph, we can ask how to find “as much of the pattern as possible” inside the target
graph. This is known as the maximum common subgraph problem.

We will look at the two different types of subgraph problems (and their variations), as
well as talk about a restricted alternative [1] which asks if all but k vertices from the
pattern can be found in the target graph.

Finally, we will look at ongoing research into making the algorithms involved in these
problems faster by using a combination of homomorphisms, and subgraph homomorphism
search to inform the original problem as to where the pattern graph will never occur in
the target graph.

[1] R. Hoffmann, C. McCreesh, C. Reilly. Between Subgraph Isomorphism and Maximum Common
Subgraph AAAI 2017.



Applications of Partial Difference Families to Partial Designs
Laura Johnson
1j68@st-andrews.ac.uk
University of St. Andrews

(This talk is based on joint work with Dr Sophie Huczynska.)

In 1939 Bose and Nair defined partially balanced incomplete block designs (PBIBDs).
These are the partial analogue of BIBDs. More recently, in the early 2000s, Ogata et
al. defined a new combinatorial design known as a splitting balanced incomplete block
design (splitting BIBD). The motivation for defining splitting BIBDs was to construct
AMD codes, a type of cryptographical tool used to protect against attacks from active
adversaries.

In this talk I will discuss how two recently introduced combinatorial structures known
as disjoint partial difference families (DPDFs) and external partial difference families
(EPDFs) may be used to find constructions of these designs.



Is Your Combinatorial Search Algorithm Telling the Truth?
Ciaran McCreesh

ciaran.mccreesh@glasgow.ac.uk

University of Glasgow

How do you know whether your combinatorial search algorithm is implemented correctly?
You could try testing it, but even if you're convinced you’ve done a thorough job, will
anyone else believe you? Another possibility is “correct by construction” software cre-
ated using formal methods—but these methods are far from being able to approach the
complexity or performance of modern satisfiability or constraint programming solvers. In
this talk I'll tell you about a third option, called proof logging or certifying. The idea is
that, alongside a solution, an algorithm must produce a mathematical proof in a standard
format that demonstrates that the solution is correct. This proof can be verified by an
independent proof checker, which should be much simpler, and thus easier to trust. The
key challenge in getting this to work is to find a proof language which is both simple to
verify, and expressive enough to cover a wide range of solving techniques with very low
overheads. It’s not obvious that such a language should even exist, but I'll argue that
cutting planes with a dominance-based extension rule might be exactly what we need:
even though cutting planes has no notion of what vertices, graphs, or even integers are, it
is strong enough to verify the reasoning used in state of the art algorithms for problems
like subgraph isomorphism, clique, and maximum common connected subgraph, and even
in constraint programming solvers.



Combinatorial generation:
graphs, algorithms, polytopes, and optimization

Torsten Mutze
torsten.mutze@warwick.ac.uk

University of Warwick

In mathematics and computer science we frequently encounter different classes of combi-
natorial objects. In this talk I focus on algorithms for efficiently generating these objects,
i.e., an algorithm should visit each of the objects from the class exactly once. This prob-
lem has ramifications into algorithms, graph theory, algebra, geometry etc., which I will
highlight in this talk. Moreover, I present two recent frameworks which allow solving
the generation problem systematically for a large variety of different objects. The first
framework is based on encoding the combinatorial objects by permutations. The second
framework uses combinatorial optimization as a black box for the purpose of generation.
The listings of objects computed by both frameworks correspond to Hamilton paths and
cycles on very general classes of polytopes.



Kneser graphs are Hamiltonian
Namrata
namrata@warwick.ac.uk
University of Warwick

(This talk is based on joint work with Arturo Merino and Torsten Miitze.)

For integers k > 1 and n > 2k + 1, the Kneser graph K (n, k) has as vertices all k-element
subsets of an n-element ground set, and an edge between any two disjoint sets. It has
been conjectured since the 1970s that all Kneser graphs admit a Hamilton cycle, with one
notable exception, namely the Petersen graph K (5, 2). This problem received considerable
attention in the literature, including a recent solution for the sparsest case n = 2k + 1.
The main contribution of this work is to prove the conjecture in full generality. We also
extend this Hamiltonicity result to all connected generalized Johnson graphs (except the
Petersen graph). The generalized Johnson graph J(n,k, s) has as vertices all k-element
subsets of an n-element ground set, and an edge between any two sets whose intersection
has size exactly s. Clearly, we have K(n,k) = J(n,k,0), i.e., generalized Johnson graph
include Kneser graphs as a special case. Our results imply that all known families of
vertex-transitive graphs defined by intersecting set systems have a Hamilton cycle, which
settles an interesting special case of Lovasz’ conjecture on Hamilton cycles in vertex-
transitive graphs from 1970. Our main technical innovation is to study cycles in Kneser
graphs by a kinetic system of multiple gliders that move at different speeds and that
interact over time, somewhat reminiscent of the gliders in Conway’s Game of Life, and
to analyze this system combinatorially and via linear algebra.



A combinatorics and crypt applications sandwich:
Distinct Difference Configurations for Wireless Sensor Networks

Emma Smith
Emma.Smith.2020@live.rhul.ac.uk
Royal Holloway University of London

(This talk is based on joint work with Simon Blackburn and Luke Stewart.)

A Distinct Difference Configuration (DDC) is a subset of a group, whose pairwise differ-
ences are distinct. Wireless Sensor Networks (WSNs) are networks of spatially distributed
devices that measure their environment and pass these measurements across the network.
This talk will sandwich how DDCs can be used for key distribution in WSNs, between

some background on DDCs themselves and some recent results inspired by the applica-
tion.



Transversal embeddings
Katherine Staden

katherine.staden@open.ac.uk
The Open University
(This talk is based on joint work with Yangyang Cheng.)

A classical question in graph theory is to find sufficient conditions which guarantee that
a graph GG contains a given spanning subgraph H. A colourful variant of this problem has
graphs G, ..., G, on the same vertex set, where s > e(H) and we think of each graph
as having a different colour, and the goal is to find a transversal (or rainbow) copy of H
that contains at most one edge from each graph G;. I will survey this area and its proof
techniques, and will discuss some joint work with Yangyang Cheng on regularity tools in
this setting.



Thresholds for patterns in random permutations
Dan Threlfall
daniel.threlfall@strath.ac.uk
University of Strathclyde

(This talk is based on joint work with David Bevan.)

In this talk we will investigate thresholds for the appearance and disappearance of consec-
utive patterns occurring within large random permutations as the number of inversions
increases. Let o, ,, denote a permutation chosen uniformly from the set of n-permutations
with exactly m inversions. We call o, ,, the uniform random permutation.

As the number of inversions increases, consecutive patterns appear before eventually
disappearing in the following way: if 7 is any non-monotonic consecutive pattern, then
there exist functions f~(n) and f1(n) such that

0 it m < fo(n)
li_>m P[oy,m contains 7] = < 1 if f7(n)<mand ff(n)< (3)—m
0 if (5) —m< fi(n)

where f(n) < g(n) if and only if lim,, % = 0. We establish these lower and upper
thresholds for any fixed consecutive pattern 7. We also consider thresholds for classical

patterns.

To do so, we work with inversion sequences, which we consider to be weak integer com-
positions. As a result, we introduce the following model of random integer compositions.
Let C,, ,,, denote the set of all compositions of length n such that all terms sum to m. Let
p €10,1) and ¢ = 1 —p, then for each m > 0, we assign to each composition C' € C,, ,,, the
probability p™q™. Each term is sampled independently from the geometric distribution
with parameter ¢; that is, P[C(i) = k:] = pq for each k > 0 and i € [n]. We call such a
random composition a geometric random composition. We establish that, asymptotically
with probability tending to 1, a geometric random composition is an inversion sequence
if and only if p < 1.

This talk will focus on how we transfer thresholds for patterns in the geometric random
composition to get thresholds for patterns in the uniform random permutation.
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