Kneser graphs are Hamiltonian

Namrata (Warwick)
joint work with
Arturo Merino (TU Berlin)
Torsten Mütze (Warwick and Charles University, Prague)

Scottish Combinatorics Meeting 2023
Introduction

- **Kneser graph** $K(n, k)$

 vertices: k-elements subsets of \{1, 2, ..., n\}

 edges: (A, B), where $A \cap B = \emptyset$
Introduction

- Kneser graph $K(n, k)$

 vertices: k-elements subsets of $\{1, 2, \ldots, n\}$

 edges: (A, B), where $A \cap B = \emptyset$

Complete graph $K(4, 1)$
Introduction

- **Kneser graph** $K(n,k)$

 vertices: k-elements subsets of \{1, 2, ..., n\}

 edges: (A, B), where $A \cap B = \emptyset$
Introduction

- **Kneser graph** $K(n, k)$

 vertices: k-elements subsets of $\{1, 2, \ldots, n\}$

 edges: (A, B), where $A \cap B = \emptyset$

- assumption: $k \geq 1$ and $n \geq 2k + 1$
Origin

- *Conjecture ([Kneser 1955]):* If the k-subsets of a n-set are divided into $n - 2k + 1$ classes, then two disjoint subsets end up in the same class.
Origin

- *Conjecture* ([Kneser 1955]): If the k-subsets of a n-set are divided into $n - 2k + 1$ classes, then two disjoint subsets end up in the same class.

- [Lovász 1978] introduced Kneser graphs to prove Kneser’s conjecture
 \[\chi(K(n, k)) = n - 2k + 2 \]
Origin

• **Conjecture** ([Kneser 1955]): If the k-subsets of a n-set are divided into $n - 2k + 1$ classes, then two disjoint subsets end up in the same class.

• [Lovász 1978] introduced Kneser graphs to prove Kneser's conjecture
 \[\chi(K(n, k)) = n - 2k + 2 \]

• vertex-transitive
Origin

- Conjecture ([Kneser 1955]): If the k-subsets of a n-set are divided into $n - 2k + 1$ classes, then two disjoint subsets end up in the same class.

- [Lovász 1978] introduced Kneser graphs to prove Kneser’s conjecture
 \[\chi(K(n, k)) = n - 2k + 2 \]

- vertex-transitive

- Conjecture ([Lovász 1970]): Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them is $K(5,2)$).
Origin

- **Conjecture** ([Kneser 1955]): If the k-subsets of a n-set are divided into $n - 2k + 1$ classes, then two disjoint subsets end up in the same class.

- [Lovász 1978] introduced Kneser graphs to prove Kneser’s conjecture
 \[\chi(K(n, k)) = n - 2k + 2 \]

- vertex-transitive

- **Conjecture** ([Lovász 1970]): Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them is $K(5,2)$).

- special case: **Kneser graph**, with Petersen graph $K(5,2)$ as an exception
Hamiltonicity in dense Kneser graphs

- ‘dense’ if n is large w.r.t. k
Hamiltonicity in dense Kneser graphs

- ‘dense’ if n is large w.r.t. k

- [Heinrich, Wallis 1978]: $n \geq (1 + o(1))k^2/\ln 2$
Hamiltonicity in dense Kneser graphs

• ‘dense’ if n is large w.r.t. k

• [Heinrich, Wallis 1978]: $n \geq (1 + o(1))\frac{k^2}{\ln 2}$

• [B. Chen, Lih 1987]: $n \geq (1 + o(1))\frac{k^2}{\log k}$
Hamiltonicity in dense Kneser graphs

- ‘dense’ if n is large w.r.t. k

- [Heinrich, Wallis 1978]: $n \geq (1 + o(1))k^2/\ln 2$

- [B. Chen, Lih 1987]: $n \geq (1 + o(1))k^2/\log k$

- [Y. Chen 2000]: $n \geq 3k$

- [Y. Chen 2000]: $n \geq (1 + o(1))2.62k$
Hamiltonicity in dense Kneser graphs

• ‘dense’ if n is large w.r.t. k

• [Heinrich, Wallis 1978]: $n \geq (1 + o(1))k^2/\ln 2$

• [B. Chen, Lih 1987]: $n \geq (1 + o(1))k^2/\log k$

• [Y. Chen 2000]: $n \geq 3k$

• [Y. Chen 2000]: $n \geq (1 + o(1))2.62k$

• [Y. Chen+Füredi 2002]: short proof for $n = ck, c \in \{3,4,\ldots\}$
Hamiltonicity in sparse Kneser graphs

- sparsest case: $n = 2k + 1$
Hamiltonicity in sparse Kneser graphs

• sparest case: $n = 2k + 1$

• Conjecture ([Meredith 1972, Lloyd, 1973, Biggs 1979]): Every odd graph $O_k = K(2k + 1, k)$ admits a Hamilton cycle, with one exception $K(5,2)$.
Hamiltonicity in sparse Kneser graphs

- **sparsest case:** \(n = 2k + 1 \)

- **Conjecture ([Meredith 1972, Lloyd, 1973, Biggs 1979]):** Every odd graph \(O_k = K(2k + 1, k) \) admits a Hamilton cycle, with one exception \(K(5, 2) \).

- **Theorem [Mütze, Nummenpalo, Walczak 2021]:** \(O_k = K(2k + 1, k) \) has a Hamilton cycle with one exception \(K(5, 2) \).
Hamiltonicity in sparse Kneser graphs

- **sparsest case**: \(n = 2k + 1 \)

- **Conjecture** ([Meredith 1972, Lloyd, 1973, Biggs 1979]): Every **odd graph** \(O_k = K(2k + 1, k) \) admits a Hamilton cycle, with one exception \(K(5,2) \).

- Theorem [Mütze, Nummenpalo, Walczak 2021]: \(O_k = K(2k + 1, k) \) has a Hamilton cycle with one exception \(K(5, 2) \).

- Theorem [Mütze, Nummenpalo, Walczak 2021]: \(K(2k + 2^a, k) \) has a Hamilton cycle for all \(k \geq 3 \) and \(a \geq 0 \) (from the conditional result [Johnson 2011]).
Hamiltonicity in sparse Kneser graphs

- **sparsest case**: $n = 2k + 1$

- **Conjecture** ([Meredith 1972, Lloyd, 1973, Biggs 1979]): Every odd graph $O_k = K(2k + 1, k)$ admits a Hamilton cycle, with one exception $K(5,2)$.

- Theorem [Mütze, Nummenpalo, Walczak 2021]: $O_k = K(2k + 1, k)$ has a Hamilton cycle with one exception $K(5, 2)$.

- Theorem [Mütze, Nummenpalo, Walczak 2021]: $K(2k + 2^a, k)$ has a Hamilton cycle for all $k \geq 3$ and $a \geq 0$ (from the conditional result [Johnson 2011]).

- **open**: $2k + 3 \leq n \leq (1 + o(1)) 2.62 k$, where $n \neq 2k + 2^a$
Our 1st result

• Theorem 1 [STOC 2023]: $K(n, k)$ has a Hamilton cycle for $k \geq 1$ and $n \geq 2k + 1$, unless $(n, k) = (5, 2)$.
Our 1st result

- Theorem 1 [STOC 2023]: $K(n, k)$ has a Hamilton cycle for $k \geq 1$ and $n \geq 2k + 1$, unless $(n, k) = (5, 2)$.

- settles Hamiltonicity of $K(n, k)$ in full generality
Generalized Johnson graphs

- generalized Johnson graphs $J(n, k, s)$

 vertices: k-elements subsets of $\{1, 2, \ldots, n\}$

 edges: pairs of sets (A, B), where $|A \cap B| = s$
Generalized Johnson graphs

- generalized Johnson graphs \(J(n, k, s) \)

 vertices: \(k \)-elements subsets of \{1, 2,..., n\}

 edges: pairs of sets \((A, B) \), where \(|A \cap B| = s \)

- \(J(n, k, 0) = K(n, k) \) Kneser graphs
Generalized Johnson graphs

- **generalized Johnson graphs** \(J(n, k, s) \)

 vertices: \(k \)-elements subsets of \(\{1, 2, ..., n\} \)

 edges: pairs of sets \((A, B) \), where \(|A \cap B| = s \)

- \(J(n, k, 0) = K(n, k) \) Kneser graphs

- \(J(n, k, k - 1) = J(n, k) \) ordinary Johnson graphs
Generalized Johnson graphs

- generalized Johnson graphs $J(n, k, s)$
 - vertices: k-elements subsets of $\{1, 2, \ldots, n\}$
 - edges: pairs of sets (A, B), where $|A \cap B| = s$

- $J(n, k, 0) = K(n, k)$ Kneser graphs

- $J(n, k, k - 1) = J(n, k)$ ordinary Johnson graphs

- vertex-transitive
Our 2nd result

- Theorem 2 [STOC 2023]: $J(n, k, s)$ has a Hamilton cycle for $k \geq 1$ and $n \geq 2k + 1$, unless $(n, k, s) = (5, 2, 0), (5, 3, 1)$, the Petersen graph.
Our 2nd result

- Theorem 2 [STOC 2023]: $J(n, k, s)$ has a Hamilton cycle for $k \geq 1$ and $n \geq 2k + 1$, unless $(n, k, s) = (5, 2, 0), (5, 3, 1)$, the Petersen graph.

- settles the Hamiltonicity problem for graphs defined by intersecting set-systems
Proof outline

• construct a cycle factor: collection of cycles covering all vertices
 (it works for $n \geq 2k + 1$)
Proof outline

• construct a cycle factor: collection of cycles covering all vertices
 (it works for $n \geq 2k + 1$)

• glue cycles together (the assumption $n \geq 2k + 3$ is important)
Cycle factors

- k-subset of n is represented by a binary string of length n with k 1s.
Cycle factors

- k-subset of n is represented by a binary string of length n with k 1s.
- Example: $n = 11, k = 4, x = \{4, 7, 8, 10\}$
Cycle factors

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{array}
\]

\(x\)

\(\text{denote 1 by [and 0 by]}\)
Cycle factors

- denote 1 by [and 0 by]

- cyclical parenthesis matching (closest pairs of 1s and 0s)
Cycle factors

- denote 1 by [and 0 by]
- cyclical parenthesis matching (closest pairs of 1s and 0s)
Cycle factors

- denote 1 by [and 0 by]
- cyclical parenthesis matching (closest pairs of 1s and 0s)
Cycle factors

- denote 1 by [and 0 by]
- cyclical parenthesis matching (closest pairs of 1s and 0s)
Cycle factors

- denote 1 by [and 0 by]
- cyclical parenthesis matching (closest pairs of 1s and 0s)
Cycle factors

• f: complement the matched bits
Cycle factors

- \(f \): complement the matched bits

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}
\]
Cycle factors

- edge in a Kneser graph: \((x, f(x))\)

- \(f\): complement the matched bits
Cycle factors

- f: complement the matched bits
- edge in a Kneser graph: $(x, f(x))$
- repeated application of f gives a cycle
Cycle factors

• complement the matched bits

\[f(00010011010) = 10001000101 \]

- \(f \): complement the matched bits
- edge in a Kneser graph: \((x, f(x))\)
- repeated application of \(f \) gives a cycle
- partitions the vertices of \(K(n, k) \) into disjoint cycles
Example

$K(6, 2)$
Example

\[
\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

\[f\]

\[K(6, 2)\]
Example

\[f(6, 2) \]

\[\{1, 4\} \]

\[\{1, 5\} \]

\[\{1, 6\} \]

\[\{2, 3\} \]

\[\{2, 4\} \]

\[\{2, 5\} \]

\[\{2, 6\} \]

\[\{3, 4\} \]

\[\{3, 5\} \]

\[\{3, 6\} \]

\[\{4, 5\} \]

\[\{4, 6\} \]

\[\{5, 6\} \]

\[K(6, 2) \]
Example

\[
\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
f \downarrow & & & & & \\
0 & 0 & 1 & 1 & 0 & 0 \\
f \downarrow & & & & & \\
0 & 0 & 0 & 0 & 1 & 1 \\
\end{array}
\]

\[K(6, 2)\]
Example

\[
\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]
Example

\[
\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

\(K(6, 2)\)
Example

\begin{itemize}
\item \[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}\]
\end{itemize}

\[K(6, 2)\]
Example

<table>
<thead>
<tr>
<th>1 0 1 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 0 0</td>
</tr>
<tr>
<td>0 0 1 0 1 0</td>
</tr>
<tr>
<td>0 0 0 1 0 1</td>
</tr>
<tr>
<td>1 0 0 0 1 0</td>
</tr>
</tbody>
</table>

Graph $K(6, 2)$

- Nodes: $\{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{1,6\}, \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{3,4\}, \{3,5\}, \{3,6\}, \{4,5\}, \{4,6\}, \{5,6\}$
- Edges: All possible edges between nodes.
Example

\[
\begin{array}{cccccc}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[K(6, 2)\]
Example

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\(f \)

\(K(6, 2) \)
Example

\[f(6, 2) \]

\[K(6, 2) \]
Example

\[
\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\{1,4\} & \{1,5\} & \{1,6\} & \{2,3\} & \{2,4\} & \{2,5\} \\
\{2,6\} & \{3,4\} & \{3,5\} & \{3,6\} & \{4,5\} & \{4,6\} \\
\{5,6\} & \{1,2\} & \{1,3\} & \{1,4\} & \{1,5\} & \{2,3\} \\
\end{array}
\]
Example

\[
\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[K(6, 2)\]
Example

\[f(6, 2) \]

\[\{1,4\} \]

\[\{1,2\} \]

\[\{1,3\} \]

\[\{1,5\} \]

\[\{1,6\} \]

\[\{2,3\} \]

\[\{2,4\} \]

\[\{2,5\} \]

\[\{2,6\} \]

\[\{3,4\} \]

\[\{3,5\} \]

\[\{3,6\} \]

\[\{4,5\} \]

\[\{4,6\} \]

\[\{5,6\} \]

\[K(6, 2) \]
Example

f

$K(6, 2)$
Example

\[f(\{1,2\}) = 1 \]
\[f(\{1,3\}) = 0 \]
\[f(\{1,4\}) = 0 \]
\[f(\{1,5\}) = 0 \]
\[f(\{1,6\}) = 0 \]
\[f(\{2,3\}) = 0 \]
\[f(\{2,4\}) = 0 \]
\[f(\{2,5\}) = 0 \]
\[f(\{2,6\}) = 0 \]
\[f(\{3,4\}) = 0 \]
\[f(\{3,5\}) = 0 \]
\[f(\{3,6\}) = 0 \]
\[f(\{4,5\}) = 0 \]
\[f(\{4,6\}) = 0 \]
\[f(\{5,6\}) = 0 \]

\[K(6, 2) \]
Cycle factors

\[K(6, 2) \]
Analysis of cycles

$K(15, 1)$
Analysis of cycles

$K(15, 1)$

f

$K(15, 1)$
Analysis of cycles

\[K(15, 1) \]

- two matched bits form a glider
Analysis of cycles

- two matched bits form a glider
- glider moves by one unit per step
Analysis of cycles

\(K(15, 2) \)

- four matched bits form a **glider**
- glider **moves** by two units per step
Gliders

$K(15, 1)$

$K(15, 2)$

- **glider** = set of matched 1s and 0s
Gliders

\[K(15, 1) \]

\[K(15, 2) \]

- **glider** = set of matched 1s and 0s
- **speed** \((\nu)\) = numbers of 1s = number of 0s
Motion of gliders

$K(15, 3)$

$v = 1$ $v = 2$
Motion of gliders

$K(15, 3)$

$v = 1$
$v = 2$

t

$v = 1$
$v = 2$
Motion of gliders

$K(15, 3)$

\[\begin{align*}
\text{\textbf{position on zero}} &: s(t) = v \cdot t + s(0) \\
\text{\textbf{speed}} &: \text{number of times } f \text{ is applied}
\end{align*} \]
Motion of gliders

\[K(15, 3) \]

\[s(t) = v \cdot t + s(0) \]

- position after time \(t \): \[s(t) = v \cdot t + s(0) \]
- motion can be either uniform or non-uniform

\(v = 1 \)

\(v = 2 \)
Gliders partitioning

$K(18, 7)$

classical matching
Gliders partitioning

\(K(18, 7)\)

- Assigning matched bits to gliders (coloring boxes) is complicated!
Gliders partitioning

$K(18, 7)$

• Assigning matched bits to gliders (coloring boxes) is complicated!

• recursion assigns the matched bits to gliders
Gliders partitioning

$K(18, 7)$

- Assigning matched bits to gliders (coloring boxes) is complicated!

- Recursion assigns the matched bits to gliders

- Speed set of gliders is a **cycle invariant**
Gluing cycles

\[C_1 \xrightarrow{f} f(x) \xleftarrow{f} f(y) \]

\[C_2 \xrightarrow{f} f(y) \xleftarrow{f} y \]
Gluing cycles

- pair \((x, y)\) such that \(xf(x) yf(y)\) is a 4-cycle
Gluing cycles

- pair \((x, y)\) such that \(xf(x) yf(y)\) is a 4-cycle
Gluing cycles

- pair \((x, y)\) such that \(x f(x) y f(y)\) is a 4-cycle
 - 4-cycle is there since \(n \geq 2k + 3\)
Gluing cycles
Gluing cycles

- gluing cycles must be edge-disjoint
Gluing cycles

- find \((x, y)\) when the speed set of gliders increases lexicographically
Gluing cycles

- find \((x, y)\) when the speed set of gliders increases lexicographically
Gluing cycles

- find \((x, y)\) when the speed set of gliders increases lexicographically

\[
x + f(x) = f(y) + y
\]

- ensures connectivity and hence Hamiltonicity
Open questions

• efficient algorithms?
Open questions

- efficient algorithms?
- other vertex transitive graphs?
Open questions

• efficient algorithms?
• other vertex transitive graphs?
• Hamilton decomposition of Kneser graphs?
Thank you!