
Is Your Combinatorial Search Algorithm
Telling the Truth?
Ciaran McCreesh
With numerous co-conspirators, including Bart Bogaerts, Jan Elffers,
Stephan Gocht, Ross McBride, Matthew McIlree, Jakob Nordström,
Andy Oertel, Patrick Prosser, and James Trimble

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern
recognition, . . .

Often want to find all matches.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 1 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Subgraph Isomorphism

Find the pattern inside the target.

Applications in compilers, biochemistry, model checking, pattern
recognition, . . .

Often want to find all matches.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 1 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

The Maximum Clique Problem

3

4

6
7

9

10

11
12

1

2

5

8

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 2 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

The Maximum Clique Problem

3

4

6
7

9

10

11
12

1

2

5

8

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 2 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Constraint Programming

We have a set of variables.

Each variable has a finite domain.

We have constraints between variables.

Give each variable a value from its domain, satisfying all
constraints (and maybe maximise some objective).

Solve using inference and intelligent backtracking search.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 3 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Worst-Case Complexity vs Practice

These problems are NP-hard, hard to approximate, etc.

We can solve maximum clique on larger graphs than all-pairs
shortest path.

We don’t have a deep understanding as to why.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 4 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

The Slight Problem. . .

State of the art solvers occasionally produce incorrect answers.

Extensive testing?

Only uncovers superficial bugs.
Empirically unsuccessful, even if people try really hard.
Even if you’re sure, why should anyone believe you?

Formal methods?

Far from being able to handle state of the art algorithms and
solvers.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 5 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

The Slight Problem. . .

State of the art solvers occasionally produce incorrect answers.
Extensive testing?

Only uncovers superficial bugs.
Empirically unsuccessful, even if people try really hard.
Even if you’re sure, why should anyone believe you?

Formal methods?

Far from being able to handle state of the art algorithms and
solvers.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 5 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

The Slight Problem. . .

State of the art solvers occasionally produce incorrect answers.
Extensive testing?

Only uncovers superficial bugs.
Empirically unsuccessful, even if people try really hard.
Even if you’re sure, why should anyone believe you?

Formal methods?
Far from being able to handle state of the art algorithms and
solvers.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 5 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Proof Logging

Solver

Checker

Result

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 6 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Proof Logging

Solver

Checker

Result

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 6 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Proof Logging

Solver

Checker

Result

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 6 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Proof Logging

Solver

Checker

Result

Proof ✓ or ✗

Input

1 Run solver on problem input.

2 Get as output not only result but also proof.

3 Feed input + result + proof to proof checker.

4 Verify that proof checker says result is correct.
Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 6 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is A Proof?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 7 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

The SAT Problem

Variable x : takes value true (=1) or false (=0)

Literal ℓ : variable x or its negation x

Clause C = ℓ1 ∨ · · · ∨ ℓk : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:
conjunction of clauses

The SAT Problem
Given a CNF formula F , is it satisfiable?

For instance, what about:

(p ∨ u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u ∨ x ∨ y) ∧
(x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (p ∨ u)

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 8 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Proofs for SAT

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of clauses (CNF constraints).

Each clause follows “obviously” from everything we know so far.

Final clause is empty, meaning contradiction (written ⊥).
Means original formula must be inconsistent.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 9 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 10 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 10 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 10 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 10 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (�r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 10 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (�r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 10 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (�r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 10 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Is Obvious? Unit Propagation

Unit Propagation

Clause C unit propagates ℓ under partial assignment 𝜌 if 𝜌 falsifies
all literals in C except ℓ .

Example: Unit propagate for 𝜌 = {p ↦→ 0, q ↦→ 0} on
(�p∨u) ∧ (�q∨r) ∧ (�r∨w) ∧ (�u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

p ∨ u propagates u ↦→ 0.

q ∨ r propagates r ↦→ 1.

Then r ∨ w propagates w ↦→ 1.

No further unit propagations.

Proof checker should know how to unit propagate until saturation.
Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 10 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨�y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨�u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨�y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨�u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨�u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨�y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (��p�∨�u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨y) ∧ (�x∨��y∨z) ∧ (x∨z) ∧ (��y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨y) ∧ (�x∨��y∨z) ∧ (x∨z) ∧ (��y�∨�z) ∧ (x∨�z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (�x∨z) ∧ (y∨z) ∧ (�x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (�x∨z) ∧ (y∨�z) ∧ (�x�∨�z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Davis-Putman-Logemann-Loveland (DPLL)

DPLL: Assign variables and propagate; backtrack when clause
violated.

“Proof trace”: when backtracking, write negation of guesses made.

(p∨u) ∧ (q∨r) ∧ (r∨w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

1 x ∨ y

2 x ∨ y

3 x

4 x

5 ⊥

x

y

E

0

E

1

0

E

1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 11 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 12 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 12 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause

C is a reverse unit propagation (RUP) clause with respect to F if

assigning C to false,

then unit propagating on F until saturation

leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact
Backtrack clauses from DPLL solver generate a RUP proof.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 12 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (�u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (�u∨�x∨y) ∧ (�x∨��y∨z) ∧ (x∨z) ∧ (��y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (�u∨�x∨y) ∧ (�x∨��y∨z) ∧ (x∨z) ∧ (��y�∨�z) ∧ (x∨�z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (�x∨z) ∧ (y∨z) ∧ (�x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (�x∨z) ∧ (y∨�z) ∧ (�x�∨�z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨x∨y) ∧ (x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨�u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (p∨�u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

RUP Proofs and CDCL

Fact
All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

(p∨�u) ∧ (q ∨ r) ∧ (r ∨ w) ∧ (u∨�x∨y) ∧ (�x∨y∨z) ∧ (x∨z) ∧ (y∨z) ∧ (x∨z) ∧ (��p�∨�u)

is sequence of reverse unit propagation (RUP) clauses

1 u ∨ x

2 x

3 ⊥

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 13 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Resolution Proofs

Fact
RUP proofs can be seen as shorthand for Resolution proofs.

Model axioms From the input

Resolution x1 ∨ x2 ∨ . . . ∨ xi ∨ c c ∨ y1 ∨ y2 ∨ . . . yj
x1 ∨ x2 ∨ . . . ∨ xi ∨ y1 ∨ y2 ∨ . . . ∨ yj

To prove unsatisfiability: resolve until you reach the empty
clause.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 14 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Resolution Can’t Count

In subgraph isomorphism, can’t map a pattern vertex with n
vertices into a target graph with n − 1 vertices.

This requires exponential length proofs in resolution!

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 15 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

From CNF to Pseudo-Boolean

A set of {0, 1}-valued variables xi , 1 means true.

Constraints are linear inequalities∑︁
i

cixi ≥ C

Write x i to mean 1 − xi .

Can rewrite CNF to pseudo-Boolean directly,

x1 ∨ x2 ∨ x3 ↔ x1 + x2 + x3 ≥ 1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 16 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Cutting Planes Proofs

Model axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i (ai + bi)ℓi ≥ A + B

Multiplication
for any c ∈ N+

∑
i aiℓi ≥ A∑

i caiℓi ≥ cA

Division
for any c ∈ N+

∑
i aiℓi ≥ A∑

i
⌈ ai
c

⌉
ℓi ≥

⌈A
c

⌉
Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 17 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Interleaving RUP and Cutting Planes

Can define RUP similarly for pseudo-Boolean constraints.

It does the same thing on clauses.

Idea: use RUP for backtracking, and include explicit cutting
planes steps to justify reasoning.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 18 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

The VeriPB System

https://gitlab.com/MIAOresearch/software/VeriPB

MIT licence, written in Python with parsing in C++.

Useful features like tracing and proof debugging.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 19 / 48

https://gitlab.com/MIAOresearch/software/VeriPB

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Making a Proof-Logging Clique Solver

1 Output a pseudo-Boolean encoding of the problem.
Clique problems have several standard file formats.

2 Make the solver log its search tree.
Output a small header.
Output something on every backtrack.
Output something every time a solution is found.
Output a small footer.

3 Figure out how to log the bound function.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 20 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 21 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 21 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 21 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 21 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

A Slightly Different Workflow

Solver

Checker

Result

Proof ✓ or ✗

Input

Encoded Input

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 21 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

A Pseudo-Boolean Encoding for Clique (in OPB Format)

3

4

6
7

9

10

11
12

1

2

5

8

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 . . . and so on. . . -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* . . . and a further 38 similar lines for the remaining non-edges

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 22 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12pseudo-Boolean proof version 1.2

f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Start with a header.
Load the 41 problem axioms.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Branch on 12, 7, 9.
Find a new incumbent.
Now looking for a ≥ 4 vertex clique.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Backtrack from 12, 7.
Only 6 and 9 feasible.
No ≥ 4 vertex clique possible.
Effectively this deletes the 7–12 edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11
12

Backtrack from 12.
Only 1, 6 and 9 feasible.
No ≥ 4 vertex clique possible.
Effectively this deletes vertex 12.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11

Branch on 11 then 10.
Only 1, 3 and 9 feasible.
No ≥ 4 vertex clique possible.
Backtrack, deleting the edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

11

Backtrack from 11.
Clearly no ≥ 4 clique.
Delete the vertex.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Branch on 8, 5, 1, 2.
Find a new incumbent.
Now looking for a ≥ 5 vertex clique.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Backtrack from 8, 5.
Only 4 vertices, can’t have a ≥ 5 clique.
Delete the edge.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

8

9

10

Backtrack from 8.
Still not enough vertices.
Delete the vertex.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

9

10

Now obvious to solver that claim of
≥ 5 clique is contradictory
(we’ll see why).

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

First Attempt at a Proof

1

2

3

4

5
6

7

9

10

Assert previous line has derived
contradiction, ending proof.

pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 ~x12 1 ~x7 >= 1 ;
u 1 ~x12 >= 1 ;
u 1 ~x11 1 ~x10 >= 1 ;
u 1 ~x11 >= 1 ;
o x1 x2 x5 x8
u 1 ~x8 1 ~x5 >= 1 ;
u 1 ~x8 >= 1 ;
u >= 1 ;
c -1

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 23 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 24 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Verifying This Proof (Or Not. . .)

$ veripb clique.opb clique-attempt-one.veripb
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

1

2

3

4

5
6

7

8

9

10

11

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 24 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Verifying This Proof (Or Not. . .)

$ veripb --trace clique.opb clique-attempt-one.veripb
line 002: f 41

ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: u 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: u 1 ~x12 >= 1 ;
ConstraintId 044: 1 ~x12 >= 1

line 006: u 1 ~x11 1 ~x10 >= 1 ;
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 24 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Bound Functions

1

39

2

4

7 5
6

10

8

11
12

Given a k-colouring of a subgraph, that subgraph cannot have a
clique of more than k vertices.

Each colour class describes an at-most-one constraint.

This does not follow by reverse unit propagation.
Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 25 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we might use in the
pseudo-Boolean input.

But we can use cutting planes to recover colour classes lazily!

(x1 + x6 ≥ 1)
+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.
Each non-edge is used exactly once, v (v − 1) additions.
v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cutting planes to write this out.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 26 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we might use in the
pseudo-Boolean input.

But we can use cutting planes to recover colour classes lazily!

(x1 + x6 ≥ 1)
+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.
Each non-edge is used exactly once, v (v − 1) additions.
v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cutting planes to write this out.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 26 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we might use in the
pseudo-Boolean input.

But we can use cutting planes to recover colour classes lazily!

(x1 + x6 ≥ 1)
+ (x1 + x9 ≥ 1) = 2x1 + x6 + x9 ≥ 2

+ (x6 + x9 ≥ 1) = 2x1 + 2x6 + 2x9 ≥ 3

/ 2 = x1 + x6 + x9 ≥ 2

i.e. x1 + x6 + x9 ≤ 1

This generalises for arbitrarily large colour classes.
Each non-edge is used exactly once, v (v − 1) additions.
v − 3 multiplications and v − 2 divisions.

Solvers don’t need to “understand” cutting planes to write this out.
Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 26 / 48

What This Looks Like

pseudo-Boolean proof version 1.2
f 41
o x12 x7 x9
u 1 ~x12 1 ~x7 >= 1 ;
* bound, colour classes [x1 x6 x9]
p 71≁6 191≁9 + 246≁9 + 2 d
p 42obj -1 +
u 1 ~x12 >= 1 ;
* bound, colour classes [x1 x3 x9]
p 11≁3 191≁9 + 213≁9 + 2 d
p 42obj -1 +
u 1 ~x11 1 ~x10 >= 1 ;
* bound, colour classes [x1 x3 x7] [x9]
p 11≁3 101≁7 + 123≁7 + 2 d
p 42obj -1 +
u 1 ~x11 >= 1 ;
o x8 x5 x2 x1
u 1 ~x8 1 ~x5 >= 1 ;
* bound, colour classes [x1 x9] [x2]
p 53obj 191≁9 +
u 1 ~x8 >= 1 ;
* bound, colour classes [x1 x3 x7] [x2 x4 x9] [x5 x6 x10]
p 11≁3 101≁7 + 123≁7 + 2 d
p 53obj -1 +
p 42≁4 202≁9 + 224≁9 + 2 d
p 53obj -3 + -1 +
p 95≁6 265≁10 + 276≁10 + 2 d
p 53obj -5 + -3 + -1 +
u >= 1 ;
c -1

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Verifying This Proof (For Real, This Time)

$ veripb --trace clique.opb clique-attempt-two.veripb
=== begin trace ===
line 002: f 41
ConstraintId 001: 1 ~x1 1 ~x3 >= 1
ConstraintId 002: 1 ~x2 1 ~x3 >= 1

...
ConstraintId 041: 1 ~x11 1 ~x12 >= 1

line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4

line 004: u 1 ~x12 1 ~x7 >= 1 ;
ConstraintId 043: 1 ~x7 1 ~x12 >= 1

line 005: * bound, colour classes [x1 x6 x9]
line 006: p 7 19 + 24 + 2 d

ConstraintId 044: 1 ~x1 1 ~x6 1 ~x9 >= 2
line 007: p 42 43 +

ConstraintId 045: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x8 1 x9 1 x10 1 x11 >= 3
...

ConstraintId 061: 1 ~x5 1 ~x6 1 ~x10 >= 2
line 028: p 53 57 + 59 + 61 +

ConstraintId 062: 1 x8 1 x11 1 x12 >= 2
line 029: u >= 1 ;

ConstraintId 063: >= 1
line 030: c -1
=== end trace ===

Verification succeeded.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 28 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Different Clique Algorithms

Different search orders?

✓ Irrelevant for proof logging.

Using local search to initialise?

✓ Just log the incumbent.

Different bound functions?

Is cutting planes strong enough to justify every useful bound
function ever invented?

So far, seems like it. . .

Weighted cliques?

✓ Multiply a colour class by its largest weight.

✓ Also works for vertices “split between colour classes”.
Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 29 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What About Subgraph Isomorphism?

Each pattern vertex gets a target vertex:∑︁
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑︁
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t , then p’s neighbours must
be mapped to t’s neighbours:

xp,t +
∑︁

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 30 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What About Subgraph Isomorphism?

Each pattern vertex gets a target vertex:∑︁
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑︁
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t , then p’s neighbours must
be mapped to t’s neighbours:

xp,t +
∑︁

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 30 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What About Subgraph Isomorphism?

Each pattern vertex gets a target vertex:∑︁
t∈V(T)

xp,t = 1 p ∈ V(P)

Each target vertex may be used at most once:∑︁
p∈V(P)

−xp,t ≥ −1 t ∈ V(T)

Adjacency constraints, if p is mapped to t , then p’s neighbours must
be mapped to t’s neighbours:

xp,t +
∑︁

u∈N(t)
xq,u ≥ 1 p ∈ V(P), q ∈ N(p), t ∈ V(T)

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 30 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Degree Reasoning in Cutting Planes

A pattern vertex p of degree deg(p) can never be mapped to a target
vertex t of degree deg(p) − 1 or lower in any subgraph isomorphism.

Observe N(p) = {q, r, s} and N(t) = {u, v}.

We wish to derive xp,t ≥ 1.

o

p

q

r

s

t

u

v

x

y

z

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 31 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Degree Reasoning in Cutting Planes

We have the three adjacency constraints,

xp,t + xq,u + xq,v ≥ 1

xp,t + xr,u + xr,v ≥ 1

xp,t + xs,u + xs,v ≥ 1

Their sum is

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3

o

p

q

r

s

t

u

v

x

y

z

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 32 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Degree Reasoning in Cutting Planes

Continuing with the sum

3xp,t + xq,u + xq,v + xr,u + xr,v + xs,u + xs,v ≥ 3

Due to injectivity,

− xo,u + −xp,u + −xq,u + −xr,u + −xs,u ≥ −1
− xo,v + −xp,v + −xq,v + −xr,v + −xs,v ≥ −1

Add all these together, getting

3xp,t + −xo,u + −xo,v + −xp,u + −xp,v ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 33 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Degree Reasoning in Cutting Planes

We’re more or less there. We have:

3xp,t + −xo,u + −xo,v + −xp,u + −xp,v ≥ 1

Add the literal axioms xo,u ≥ 0, xo,v ≥ 0, xp,u ≥ 0 and xp,v ≥ 0 to get

3xp,t ≥ 1

Divide by 3 to get the desired

xp,t ≥ 1

o

p

q

r

s

t

u

v

x

y

z

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 34 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Degree Reasoning in VeriPB

p 18p∼t:q 19p∼t:r + 20p∼t:s + * sum adjacency constraints
12inj (u) + 13inj (v) + * sum injectivity constraints
xo_u + xo_v + * cancel stray xo_*
xp_u + xp_v + * cancel stray xp_*
3 d * divide, and we're done

Or we can ask VeriPB to do the last bit of simplification
automatically:

p 18p∼t:q 19p∼t:r + 20p∼t:s + * sum adjacency constraints
12inj (u) + 13inj (v) + * sum injectivity constraints

j -1 1 ~xp_t >= 1 ; * desired conclusion is implied

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 35 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph
solvers do:

Injectivity reasoning and filtering.

Distance filtering.

Neighbourhood degree sequences.

Path filtering.

Supplemental graphs.

Proof steps are “efficient” using cutting planes.

The length of the proof steps are no worse than the time
complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 36 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph
solvers do:

Injectivity reasoning and filtering.

Distance filtering.

Neighbourhood degree sequences.

Path filtering.

Supplemental graphs.

Proof steps are “efficient” using cutting planes.

The length of the proof steps are no worse than the time
complexity of the reasoning algorithms.

Most proof steps require only trivial additional computations.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 36 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Extension Variables

Suppose we want new, fresh variable a encoding

a ⇔ (3x + 2y + z + w ≥ 3)

Introduce constraints

3a + 3x + 2y + z + w ≥ 3 5a + 3x + 2y + z + w ≥ 5

Should be fine, so long as a hasn’t been used before.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 37 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Symmetries

A

B

C D

If a solution exists, a solution where C < D exists.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 38 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Dominance

1

3

4

5
6

7

8

9

10

11
12

2
2b

Can ignore vertex 2b.

Every neighbour of 2b is also a neighbour of 2.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 39 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Progress So Far on World Domination

SAT with symmetries, cardinality, XOR reasoning, MaxSAT.
Uncovered several undetected bugs in state of the art solvers.
Can’t do MaxSAT hitting set solvers yet, MIP isn’t proof logged.

Certified translations from pseudo-Boolean to CNF.

Clique, subgraph isomorphism, maximum common (connected)
induced subgraph.
Constraint programming.

Large integer variables.
Absolute value, all different, circuit, comparison, element, linear
equality and inequality, minimum and maximum, regular, smart
table constraints.

In progress: MIP preprocessing for pseudo-Boolean problems,
dynamic programming, the remaining 400 constraints for CP, . . .

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 40 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Reasoning Can We Justify?

With extension variables, as strong as Extended Frege.
So according to theorists, we can simulate pretty much
everything.

Up to a polynomial factor. . .

Except dominance is apparently even stronger?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 41 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Reasoning Can We Justify?

With extension variables, as strong as Extended Frege.
So according to theorists, we can simulate pretty much
everything.

Up to a polynomial factor. . .

Except dominance is apparently even stronger?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 41 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Reasoning Can We Justify?

With extension variables, as strong as Extended Frege.
So according to theorists, we can simulate pretty much
everything.

Up to a polynomial factor. . .

Except dominance is apparently even stronger?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 41 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

What Reasoning Can We Justify Efficiently?

Quadratic overheads are unpleasant.

Cutting planes is very good at justifying combinatorial
arguments.

It’s not really clear why.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 42 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Verifying the Verifier

How do we know the encoding is correct?

How do we know the verifier is correct?

How do we know the proof system is sound?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 43 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Proof Trimming

Proofs can be really really really big.

Often many steps end up being redundant for the final proof.

Could we make a tool that turns a really really really big proof
into a really big proof?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 44 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Counting and Sampling without Enumerating

The proof system deals with unsatisfiability.

Satisfiability is easy, just give a solution.

Optimisation is a solution and a proof there’s nothing better.

Enumeration is a solution list, and a proof there’s nothing else.

How do we provide a count without enumerating?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 45 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Going the Other Way

Can we use proofs to understand solver behaviour?
Why solvers work so well when they shouldn’t.
Why solvers perform so badly when they shouldn’t.

Explainability?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 46 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Where We’re At

Can verify solutions from state of the art combinatorial solving
algorithms, in a unified proof system.
Found many undetected bugs in widely used solvers.

Including in algorithms that have been “proved” correct.

Not being either proof logged or formally verified should be
considered socially unacceptable.

Perhaps studying proof logs can help explain why solvers work
so well?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 47 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Where We’re At

Can verify solutions from state of the art combinatorial solving
algorithms, in a unified proof system.
Found many undetected bugs in widely used solvers.

Including in algorithms that have been “proved” correct.

Not being either proof logged or formally verified should be
considered socially unacceptable.

Perhaps studying proof logs can help explain why solvers work
so well?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 47 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Where We’re At

Can verify solutions from state of the art combinatorial solving
algorithms, in a unified proof system.
Found many undetected bugs in widely used solvers.

Including in algorithms that have been “proved” correct.

Not being either proof logged or formally verified should be
considered socially unacceptable.

Perhaps studying proof logs can help explain why solvers work
so well?

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 47 / 48

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Getting Involved

https://gitlab.com/MIAOresearch/software/VeriPB

https://satcompetition.github.io/2023/downloads/
proposals/veripb.pdf

https://www.youtube.com/watch?v=s_5BIi4I22w

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth? 48 / 48

https://gitlab.com/MIAOresearch/software/VeriPB
https://satcompetition.github.io/2023/downloads/proposals/veripb.pdf
https://satcompetition.github.io/2023/downloads/proposals/veripb.pdf
https://www.youtube.com/watch?v=s_5BIi4I22w

https://ciaranm.github.io/

ciaran.mccreesh@glasgow.ac.uk

https://ciaranm.github.io/
mailto:ciaran.mccreesh@glasgow.ac.uk

	Practical Subgraph-Finding
	Proof Logging for SAT
	Beyond SAT
	Stronger Proofs
	Challenges
	Propaganda

