Is Your Combinatorial Search Algorithm Telling the Truth?

Ciaran McCreesh

With numerous co-conspirators, including Bart Bogaerts, Jan Elffers, Stephan Gocht, Ross McBride, Matthew McIlree, Jakob Nordström, Andy Oertel, Patrick Prosser, and James Trimble

Practical Subgraph-Finding •0000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

Subgraph Isomorphism

- Find the *pattern* inside the *target*.
- Applications in compilers, biochemistry, model checking, pattern recognition, ...
- Often want to find *all* matches.

Practical Subgraph-Finding •0000	Proof Logging for SAT	Beyond SAT ००००००००००००००००००००	Challenges 0000000	Propaganda 000

Subgraph Isomorphism

- Find the *pattern* inside the *target*.
- Applications in compilers, biochemistry, model checking, pattern recognition, ...
- Often want to find *all* matches.

The Maximum Clique Problem

The Maximum Clique Problem

Constraint Programming

- We have a set of *variables*.
- Each variable has a finite *domain*.
- We have *constraints* between variables.
- Give each variable a value from its domain, satisfying all constraints (and maybe maximise some objective).
- Solve using inference and intelligent backtracking search.

Worst-Case Complexity vs Practice

- These problems are NP-hard, hard to approximate, etc.
- We can solve maximum clique on larger graphs than all-pairs shortest path.
- We don't have a deep understanding as to why.

Practical Subgraph-Finding	Proof Logging for SAT	Beyond SAT ०००००००००००००००००००००	Challenges 0000000	Propaganda 000

The Slight Problem...

State of the art solvers occasionally produce incorrect answers.

The Slight Problem...

- State of the art solvers occasionally produce incorrect answers.
- Extensive testing?
 - Only uncovers superficial bugs.
 - Empirically unsuccessful, even if people try really hard.
 - Even if you're sure, why should anyone believe you?

The Slight Problem...

- State of the art solvers occasionally produce incorrect answers.
- Extensive testing?
 - Only uncovers superficial bugs.
 - Empirically unsuccessful, even if people try really hard.
 - Even if you're sure, why should anyone believe you?
- Formal methods?
 - Far from being able to handle state of the art algorithms and solvers.

1 Run solver on problem input.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

1 Run solver on problem input.

2 Get as output not only result but also proof.

Is Your Combinatorial Search Algorithm Telling the Truth?

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT оооососососососососососососо	Challenges 0000000	Propaganda 000

Proof Logging

- **1** Run solver on problem input.
- 2 Get as output not only result but also proof.
- **3** Feed input + result + proof to proof checker.

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

Proof Logging

- **1** Run solver on problem input.
- 2 Get as output not only result but also proof.
- **3** Feed input + result + proof to proof checker.
- 4 Verify that proof checker says result is correct.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Beyond SAT

Stronger Proofs

What Is A Proof?

COUNTEREXAMPLE TO EULER'S CONJECTURE ON SUMS OF LIKE POWERS

BY L. J. LANDER AND T. R. PARKIN

Communicated by J. D. Swift, June 27, 1966

A direct search on the CDC 6600 yielded

 $27^5 + 84^5 + 110^5 + 133^5 = 144^5$

as the smallest instance in which four fifth powers sum to a fifth power. This is a counterexample to a conjecture by Euler [1] that at least n *n*th powers are required to sum to an *n*th power, n > 2.

REFERENCE

1. L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1952, p. 648.

The SAT Problem

- Variable *x*: takes value **true** (= 1) or **false** (= 0)
- Literal ℓ : variable x or its negation \overline{x}
- Clause $C = \ell_1 \lor \cdots \lor \ell_k$: disjunction of literals (Consider as sets, so no repetitions and order irrelevant)
- Conjunctive normal form (CNF) formula $F = C_1 \land \cdots \land C_m$: conjunction of clauses

The SAT Problem

Given a CNF formula F, is it satisfiable?

For instance, what about:

$$\begin{array}{l} (p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land \\ (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u}) \end{array}$$

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Proofs for SAT

For satisfiable instances: just specify a satisfying assignment.

For unsatisfiability: a sequence of clauses (CNF constraints).

- Each clause follows "obviously" from everything we know so far.
- Final clause is empty, meaning contradiction (written \perp).
- Means original formula must be inconsistent.

Unit Propagation

Clause *C* unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in *C* except ℓ .

Unit Propagation

Clause *C* unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in *C* except ℓ .

Example: Unit propagate for $\rho = \{p \mapsto 0, q \mapsto 0\}$ on

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

Unit Propagation

Clause *C* unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in *C* except ℓ .

Example: Unit propagate for $\rho = \{p \mapsto 0, q \mapsto 0\}$ on

 $(\not\!\!\!\!p \lor \overline{u}) \land (\not\!\!\!q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

Unit Propagation

Clause *C* unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in *C* except ℓ .

Example: Unit propagate for $\rho = \{p \mapsto 0, q \mapsto 0\}$ on

 $(\not p \lor \overline{u}) \land (\not q \lor r) \land (\overline{r} \lor w) \land (\not \mu \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

• $p \lor \overline{u}$ propagates $u \mapsto 0$.

Unit Propagation

Clause *C* unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in *C* except ℓ .

Example: Unit propagate for $\rho = \{p \mapsto 0, q \mapsto 0\}$ on

 $(\not p \lor \overline{u}) \land (\not q \lor r) \land (\not \overline{r} \lor w) \land (\not \mu \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- $p \lor \overline{u}$ propagates $u \mapsto 0$.
- $q \lor r$ propagates $r \mapsto 1$.

Unit Propagation

Clause *C* unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in *C* except ℓ .

Example: Unit propagate for $\rho = \{p \mapsto 0, q \mapsto 0\}$ on

 $(\not p \lor \overline{u}) \land (\not q \lor r) \land (\not \overline{r} \lor w) \land (\not \mu \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- $p \lor \overline{u}$ propagates $u \mapsto 0$.
- $q \lor r$ propagates $r \mapsto 1$.
- Then $\overline{r} \lor w$ propagates $w \mapsto 1$.

Unit Propagation

Clause *C* unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in *C* except ℓ .

Example: Unit propagate for $\rho = \{p \mapsto 0, q \mapsto 0\}$ on

 $(\not p \lor \overline{u}) \land (\not q \lor r) \land (\not \overline{r} \lor w) \land (\not \mu \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- $p \lor \overline{u}$ propagates $u \mapsto 0$.
- $q \lor r$ propagates $r \mapsto 1$.
- Then $\overline{r} \lor w$ propagates $w \mapsto 1$.
- No further unit propagations.

Unit Propagation

Clause *C* unit propagates ℓ under partial assignment ρ if ρ falsifies all literals in *C* except ℓ .

Example: Unit propagate for $\rho = \{p \mapsto 0, q \mapsto 0\}$ on

 $(\not p \lor \overline{u}) \land (\not q \lor r) \land (\not \overline{r} \lor w) \land (\not p \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- $p \lor \overline{u}$ propagates $u \mapsto 0$.
- $q \lor r$ propagates $r \mapsto 1$.
- Then $\overline{r} \lor w$ propagates $w \mapsto 1$.
- No further unit propagations.

Proof checker should know how to unit propagate until saturation.

Ciaran McCreesh

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \checkmark \lor y) \land (\checkmark \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \cancel{v} \lor \cancel{v}) \land (\cancel{v} \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overrightarrow{\mu}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \cancel{x} \lor \cancel{y}) \land (\cancel{x} \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \cancel{\mu})$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{\mu}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{\mu})$

 $\begin{array}{c} 1 \quad x \lor y \\ & 0 \\ & y \\ & 0 \\ & y \\ & 0 \\ & f \end{array}$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \cancel{x} \lor \cancel{y}) \land (\cancel{x} \lor \cancel{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

 $\begin{array}{c} 1 \quad x \lor y \\ \\ 0 \\ y \\ 0 \\ z \end{array}$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \cancel{x} \lor \cancel{y}) \land (\cancel{x} \lor \cancel{y} \lor z) \land (\overline{x} \lor z) \land (\cancel{y} \lor \cancel{z}) \land (\overline{x} \lor \cancel{z}) \land (\overline{p} \lor \overrightarrow{u})$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \checkmark \lor y) \land (\checkmark \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

Ciaran McCreesh

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z}) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{y} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

DPLL: Assign variables and propagate; backtrack when clause violated.

"Proof trace": when backtracking, write negation of guesses made.

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause

C is a reverse unit propagation (RUP) clause with respect to F if

- assigning *C* to false,
- then unit propagating on F until saturation
- leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Reverse Unit Propagation (RUP)

To make this a proof, need backtrack clauses to be easily verifiable.

Reverse unit propagation (RUP) clause

C is a reverse unit propagation (RUP) clause with respect to F if

- assigning *C* to false,
- then unit propagating on F until saturation
- leads to contradiction

If so, F clearly implies C, and condition easy to verify efficiently

Fact

Backtrack clauses from DPLL solver generate a RUP proof.

Beyond SAT

Stronger Proofs 000

RUP Proofs and CDCL

Fact

All learned clauses generated by CDCL solver are RUP clauses.

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- 2 X
- 3 ⊥

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (\psi \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- $2 \overline{X}$
- 3 ⊥

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (\psi \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- $2 \overline{X}$
- 3 ⊥

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (\psi \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- 2 X
- 3 ⊥

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- 2 **X**
- 3 ⊥

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z}) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- 2 **X**
- 3 ⊥

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- 2 X
- 3

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overline{u}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \checkmark \lor y) \land (\checkmark \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \overline{u})$

- 2 X
- 3

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \not{\overline{\mu}}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \not{x} \lor y) \land (\not{x} \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overline{p} \lor \not{\overline{\mu}})$

is sequence of reverse unit propagation (RUP) clauses

- 2 X
- 3

Fact

All learned clauses generated by CDCL solver are RUP clauses.

So short proof of unsatisfiability for

 $(p \lor \overrightarrow{\mu}) \land (q \lor r) \land (\overline{r} \lor w) \land (u \lor \cancel{x} \lor y) \land (\cancel{x} \lor \overline{y} \lor z) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (\overrightarrow{p} \lor \overrightarrow{\mu})$

- 2 X
- 3 🔟

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT оосососососососососососососо	Challenges 0000000	Propaganda 000

Resolution Proofs

To prove unsatisfiability: resolve until you reach the empty clause.

Is Your Combinatorial Search Algorithm Telling the Truth?

Resolution Can't Count

- In subgraph isomorphism, can't map a pattern vertex with *n* vertices into a target graph with *n* − 1 vertices.
- This requires exponential length proofs in resolution!

From CNF to Pseudo-Boolean

- A set of $\{0, 1\}$ -valued variables x_i , 1 means true.
- Constraints are linear inequalities

$$\sum_i c_i x_i \ge C$$

- Write \overline{x}_i to mean $1 x_i$.
- Can rewrite CNF to pseudo-Boolean directly,

$$x_1 \lor \overline{x}_2 \lor x_3 \qquad \leftrightarrow \qquad x_1 + \overline{x}_2 + x_3 \ge 1$$

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT oooooooooooooooooooooooooooooo	Stronger Proofs 000	Challenges 0000000	Propaganda 000	
Cutting Plan	es Proofs					
Model axioms		From the input				
Literal axio	oms	$\ell_i \ge 0$				
Addition		$\frac{\sum_{i} a_{i}\ell_{i} \ge A}{\sum_{i} b_{i}\ell_{i} \ge A}$				
Multiplication for any $c \in \mathbb{N}^+$		$\frac{\sum_{i} a_{i}\ell_{i} \geq A}{\sum_{i} ca_{i}\ell_{i} \geq cA}$				
Division for any $c \in \mathbb{N}^+$		$\frac{\sum_{i} a_{i} \ell_{i} \ge A}{\sum_{i} \left\lceil \frac{a_{i}}{c} \right\rceil \ell_{i} \ge \left\lceil \frac{A}{c} \right\rceil}$				

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Interleaving RUP and Cutting Planes

- Can define RUP similarly for pseudo-Boolean constraints.
- It does the same thing on clauses.
- Idea: use RUP for backtracking, and include explicit cutting planes steps to justify reasoning.

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

The VeriPB System

https://gitlab.com/MIAOresearch/software/VeriPB

- MIT licence, written in Python with parsing in C++.
- Useful features like tracing and proof debugging.

Making a Proof-Logging Clique Solver

1 Output a pseudo-Boolean encoding of the problem.

- Clique problems have several standard file formats.
- 2 Make the solver log its search tree.
 - Output a small header.
 - Output something on every backtrack.
 - Output something every time a solution is found.
 - Output a small footer.
- **3** Figure out how to log the bound function.

Beyond SAT

Stronger Proofs

A Slightly Different Workflow

Beyond SAT

Stronger Proofs

Propaganda 000

A Slightly Different Workflow

Beyond SAT

Stronger Proofs

Propaganda 000

A Slightly Different Workflow

Is Your Combinatorial Search Algorithm Telling the Truth?

Beyond SAT

Stronger Proofs

A Slightly Different Workflow

Is Your Combinatorial Search Algorithm Telling the Truth?

Beyond SAT

Stronger Proofs 000

A Slightly Different Workflow

Is Your Combinatorial Search Algorithm Telling the Truth?

A Pseudo-Boolean Encoding for Clique (in OPB Format)


```
* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 ... and so on. .. -1 x11 -1 x12;
1 ~x3 1 ~x1 >= 1;
1 ~x3 1 ~x2 >= 1;
1 ~x4 1 ~x1 >= 1;
* ... and a further 38 similar lines for the remaining non-edges
```

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1 ;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT ००००००००	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1 ;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1 ;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Start with a header. Load the 41 problem axioms.

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1 ;
u 1 \sim x12 >= 1 ;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1 ;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Branch on 12, 7, 9. Find a new incumbent. Now looking for $a \ge 4$ vertex clique.

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT ००००००००	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u = 1 \sim x_{12} = 1 \sim x_{7} >= 1;
u 1 \sim x12 >= 1 ;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1 ;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1 ;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Backtrack from 12, 7. Only 6 and 9 feasible. No \geq 4 vertex clique possible. Effectively this deletes the 7–12 edge.

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1 ;
u 1 \sim x11 1 \sim x10 >= 1;
u 1 \sim x11 >= 1;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Backtrack from 12. Only 1, 6 and 9 feasible. No \geq 4 vertex clique possible. Effectively this deletes vertex 12.

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1 ;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Branch on 11 then 10. Only 1, 3 and 9 feasible. No \geq 4 vertex clique possible. Backtrack, deleting the edge.

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1 ;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Backtrack from 11. Clearly no \geq 4 clique. Delete the vertex.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Branch on 8, 5, 1, 2. Find a new incumbent. Now looking for $a \ge 5$ vertex clique.

Practical Subgraph-Fin 00000	ding Proof Logging for SAT	Beyond SAT ००००००००००००००००००००	Challenges 0000000	Propaganda 000

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Backtrack from 8, 5. Only 4 vertices, can't have $a \ge 5$ clique. Delete the edge.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?
Practical Subgraph-Find	ling Proof Logging for SAT	Beyond SAT ००००००००•०००००००००००	Challenges 0000000	Propaganda 000

First Attempt at a Proof

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1 ;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1 ;
u >= 1 ;
c -1
```


Backtrack from 8. Still not enough vertices. Delete the vertex.

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT оссосососососососососососососо	Challenges 0000000	Propaganda 000

First Attempt at a Proof

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1 ;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Now obvious to solver that claim of \geq 5 clique is contradictory (we'll see why).

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT оссосососососососососососососо	Challenges 0000000	Propaganda 000

First Attempt at a Proof

```
pseudo-Boolean proof version 1.2
f 41
o x7 x9 x12
u 1 \sim x12 1 \sim x7 >= 1;
u 1 \sim x12 >= 1 ;
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
u 1 \sim x11 >= 1;
o x1 x2 x5 x8
u 1 \sim x8 1 \sim x5 >= 1;
u 1 \sim x8 >= 1;
u >= 1 ;
c -1
```


Assert previous line has derived contradiction, ending proof.

Verifying This Proof (Or Not...)

\$ veripb clique.opb clique-attempt-one.veripb Verification failed. Failed in proof file line 6. Hint: Failed to show '1 ~x10 1 ~x11 >= 1' by reverse unit propagation.

Verifying This Proof (Or Not...)

\$ veripb clique.opb clique-attempt-one.veripb

Verification failed.

Failed in proof file line 6.

Hint: Failed to show '1 \sim x10 1 \sim x11 >= 1' by reverse unit propagation.

Verifying This Proof (Or Not...)

```
$ veripb --trace clique.opb clique-attempt-one.veripb
line 002: f 41
  ConstraintId 001: 1 \simx1 1 \simx3 >= 1
  ConstraintId 002: 1 \sim x^2 1 \sim x^3 >= 1
. . .
  ConstraintId 041: 1 \sim x11 1 \sim x12 >= 1
line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
  ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x1
line 004: u 1 \simx12 1 \simx7 >= 1 ;
  ConstraintId 043: 1 \sim x7 1 \sim x12 >= 1
line 005: u 1 ~x12 >= 1 ;
  ConstraintId 044: 1 \sim x12 \ge 1
line 006: u 1 ~x11 1 ~x10 >= 1 ;
Verification failed.
Failed in proof file line 6.
Hint: Failed to show '1 \simx10 1 \simx11 >= 1' by reverse unit propagation.
```

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

Bound Functions

Given a *k*-colouring of a subgraph, that subgraph cannot have a clique of more than *k* vertices.

• Each colour class describes an at-most-one constraint.

This does not follow by reverse unit propagation.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we *might* use in the pseudo-Boolean input.

But we can use cutting planes to recover colour classes lazily!

Practical Subgraph-Finding Proof Logging for SAT Beyond SAT Stronger Proofs Challenges Propaganda

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we *might* use in the pseudo-Boolean input.

But we can use cutting planes to recover colour classes lazily!

 $(\overline{x}_1 + \overline{x}_6 \ge 1)$ $+ (\overline{x}_1 + \overline{x}_9 \ge 1) = 2\overline{x}_1 + \overline{x}_6 + \overline{x}_9 \ge 2$ $+ (\overline{x}_6 + \overline{x}_9 \ge 1) = 2\overline{x}_1 + 2\overline{x}_6 + 2\overline{x}_9 \ge 3$ $/2 = \overline{x}_1 + \overline{x}_6 + \overline{x}_9 \ge 2$ i.e. $x_1 + x_6 + x_9 \le 1$

Is Your Combinatorial Search Algorithm Telling the Truth?

Recovering At-Most-One Constraints

Practically infeasible to list every colour class we *might* use in the pseudo-Boolean input.

But we can use cutting planes to recover colour classes lazily!

$(\overline{x}_1 + \overline{x}_6 \ge 1)$	
$+(\overline{x}_1+\overline{x}_9\geq 1)$	$= 2\overline{x}_1 + \overline{x}_6 + \overline{x}_9 \ge 2$
$+(\overline{x}_6+\overline{x}_9\geq 1)$	$= 2\overline{x}_1 + 2\overline{x}_6 + 2\overline{x}_9 \ge 3$
/ 2	$= \overline{x}_1 + \overline{x}_6 + \overline{x}_9 \ge 2$
	i.e. $x_1 + x_6 + x_9 \le 1$

This generalises for arbitrarily large colour classes.

- Each non-edge is used exactly once, v(v 1) additions.
- v 3 multiplications and v 2 divisions.

Solvers don't need to "understand" cutting planes to write this out.

What This Looks Like

```
pseudo-Boolean proof version 1.2
f 41
o x12 x7 x9
u = 1 \sim x_{12} = 1 \sim x_{7} >= 1;
* bound, colour classes [ x1 x6 x9 ]
p 7_{1 \neq 6} 19_{1 \neq 9} + 24_{6 \neq 9} + 2 d
p 42<sub>obj</sub> -1 +
u = 1 \sim x_{12} >= 1;
* bound. colour classes [ x1 x3 x9 ]
p 1_{1 \neq 3} 19_{1 \neq 9} + 21_{3 \neq 9} + 2 d
p 42obi -1 +
u = 1 \sim x_{11} = 1 \sim x_{10} >= 1;
* bound, colour classes [ x1 x3 x7 ] [ x9 ]
p \ 1_{1 \neq 3} \ 10_{1 \neq 7} \ + \ 12_{3 \neq 7} \ + \ 2 \ d
p 42<sub>obi</sub> -1 +
u = 1 \sim x_{11} >= 1:
o x8 x5 x2 x1
u 1 \sim x8 1 \sim x5 >= 1;
* bound, colour classes [ x1 x9 ] [ x2 ]
p 53<sub>obi</sub> 19<sub>1≁9</sub> +
u = 1 \sim x^8 >= 1;
* bound, colour classes [ x1 x3 x7 ] [ x2 x4 x9 ] [ x5 x6 x10 ]
p \ 1_{1 \neq 3} \ 1_{0_{1 \neq 7}} + 1_{2_{3 \neq 7}} + 2 d
p 53<sub>obi</sub> -1 +
p 4_{2 \neq 4} 20_{2 \neq 9} + 22_{4 \neq 9} + 2 d
p 53<sub>obi</sub> -3 + -1 +
p 9_{5 \neq 6} 26_{5 \neq 10} + 27_{6 \neq 10} + 2 d
p 53<sub>obi</sub> -5 + -3 + -1 +
u >= 1 :
c -1
```

Beyond SAT

tronger Proofs 100 Propaganda 000

Verifying This Proof (For Real, This Time)

```
$ veripb --trace clique.opb clique-attempt-two.veripb
=== begin trace ===
line 002 · f 41
  ConstraintId 001: 1 ~x1 1 ~x3 >= 1
  ConstraintId 002: 1 \simx2 1 \simx3 >= 1
  ConstraintId 041: 1 ~x11 1 ~x12 >= 1
line 003: o x7 x9 x12 ~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x8 ~x10 ~x11
  ConstraintId 042: 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 >= 4
line 004: u 1 ~x12 1 ~x7 >= 1 :
  ConstraintId 043: 1 \sim x7 1 \sim x12 \ge 1
line 005: * bound, colour classes [ x1 x6 x9 ]
line 006: p 7 19 + 24 + 2 d
  ConstraintId 044: 1 \simx1 1 \simx6 1 \simx9 >= 2
line 007: p 42 43 +
  ConstraintId 045. 1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x8 1 x9 1 x10 1 x11 >= 3
  ConstraintId 061: 1 ~x5 1 ~x6 1 ~x10 >= 2
line 028: p 53 57 + 59 + 61 +
  ConstraintId 062: 1 x8 1 x11 1 x12 >= 2
line 029: u >= 1 ;
  ConstraintId 063 · >= 1
line 030 · c -1
=== end trace ===
```

Verification succeeded.

Different Clique Algorithms

Different search orders?

 $\checkmark~$ Irrelevant for proof logging.

Using local search to initialise?

 \checkmark Just log the incumbent.

Different bound functions?

- Is cutting planes strong enough to justify every useful bound function ever invented?
- So far, seems like it...

Weighted cliques?

- ✓ Multiply a colour class by its largest weight.
- \checkmark Also works for vertices "split between colour classes".

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT 000000000000000000000000000000000000	Challenges 0000000	Propaganda 000

What About Subgraph Isomorphism?

Each pattern vertex gets a target vertex:

$$\sum_{t \in \mathsf{V}(T)} x_{p,t} = 1 \qquad p \in \mathsf{V}(P)$$

What About Subgraph Isomorphism?

Each pattern vertex gets a target vertex:

t

$$\sum_{e \in V(T)} x_{p,t} = 1 \qquad p \in V(P)$$

Each target vertex may be used at most once:

$$\sum_{p \in \mathsf{V}(P)} -x_{p,t} \ge -1 \qquad \qquad t \in \mathsf{V}(T)$$

Is Your Combinatorial Search Algorithm Telling the Truth?

What About Subgraph Isomorphism?

Each pattern vertex gets a target vertex:

t

$$\sum_{e \in V(T)} x_{p,t} = 1 \qquad p \in V(P)$$

Each target vertex may be used at most once:

$$\sum_{p \in \mathsf{V}(P)} -x_{p,t} \ge -1 \qquad t \in \mathsf{V}(T)$$

Adjacency constraints, if *p* is mapped to *t*, then *p*'s neighbours must be mapped to *t*'s neighbours:

$$\overline{x}_{p,t} + \sum_{u \in \mathsf{N}(t)} x_{q,u} \ge 1 \qquad p \in \mathsf{V}(P), \ q \in \mathsf{N}(p), \ t \in \mathsf{V}(T)$$

A pattern vertex *p* of degree deg(p) can never be mapped to a target vertex *t* of degree deg(p) - 1 or lower in any subgraph isomorphism.

Observe $N(p) = \{q, r, s\}$ and $N(t) = \{u, v\}$.

We wish to derive $\overline{x}_{p,t} \ge 1$.

Proof Logging for SA 000000000 Beyond SAT

Stronger Proofs

s

0

р

Challenges

Propaganda 000

х

z

Degree Reasoning in Cutting Planes

We have the three adjacency constraints,

$$\overline{x}_{p,t} + x_{q,u} + x_{q,v} \ge 1$$
$$\overline{x}_{p,t} + x_{r,u} + x_{r,v} \ge 1$$
$$\overline{x}_{p,t} + x_{s,u} + x_{s,v} \ge 1$$

Their sum is

$$3\overline{x}_{p,t} + x_{q,u} + x_{q,v} + x_{r,u} + x_{r,v} + x_{s,u} + x_{s,v} \ge 3$$

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Proof Logging for SA 000000000 Beyond SAT

Stronger Proofs

hallenges 000000

Propaganda 000

Degree Reasoning in Cutting Planes

Continuing with the sum

$$3\overline{x}_{p,t} + x_{q,u} + x_{q,v} + x_{r,u} + x_{r,v} + x_{s,u} + x_{s,v} \ge 3$$

Due to injectivity,

$$-x_{o,u} + -x_{p,u} + -x_{q,u} + -x_{r,u} + -x_{s,u} \ge -1$$

$$-x_{o,v} + -x_{p,v} + -x_{q,v} + -x_{r,v} + -x_{s,v} \ge -1$$

Add all these together, getting

$$3\overline{x}_{p,t} + -x_{o,u} + -x_{o,v} + -x_{p,u} + -x_{p,v} \ge 1$$

Proof Logging for SA

Beyond SAT

Stronger Proofs

Challenges 0000000

Propaganda 000

Degree Reasoning in Cutting Planes

We're more or less there. We have:

$$3\overline{x}_{p,t} + -x_{o,u} + -x_{o,v} + -x_{p,u} + -x_{p,v} \ge 1$$

Add the literal axioms $x_{o,u} \ge 0$, $x_{o,v} \ge 0$, $x_{p,u} \ge 0$ and $x_{p,v} \ge 0$ to get

 $3\overline{x}_{p,t} \ge 1$

Divide by 3 to get the desired

 $\overline{x}_{p,t} \ge 1$

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Degree Reasoning in VeriPB

p
$$18_{p \sim t;q}$$
 $19_{p \sim t;r}$ + $20_{p \sim t;s}$ +
 $12_{inj(u)}$ + $13_{inj(v)}$ +
xo_u + xo_v +
xp_u + xp_v +
3 d

* sum adjacency constraints
* sum injectivity constraints

- * cancel stray xo_*
- * cancel stray xp_*
- * divide, and we're done

Or we can ask VeriPB to do the last bit of simplification automatically:

$$p 18_{p\sim t:q} 19_{p\sim t:r} + 20_{p\sim t:s} + 12_{inj(u)} + 13_{inj(v)} + j -1 1 \sim xp_t >= 1 ;$$

- * sum adjacency constraints
- * sum injectivity constraints
- * desired conclusion is implied

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph solvers do:

- Injectivity reasoning and filtering.
- Distance filtering.
- Neighbourhood degree sequences.
- Path filtering.
- Supplemental graphs.

Other Forms of Reasoning

We can also log all of the other things state of the art subgraph solvers do:

- Injectivity reasoning and filtering.
- Distance filtering.
- Neighbourhood degree sequences.
- Path filtering.
- Supplemental graphs.

Proof steps are "efficient" using cutting planes.

- The length of the proof steps are no worse than the time complexity of the reasoning algorithms.
- Most proof steps require only trivial additional computations.

Practical Subgraph-Finding	Proof Logging for SAT	Beyond SAT	Stronger Proofs	Challenges	Propaganda
00000		000000000000000000000000000000000000	•00	0000000	000

Extension Variables

Suppose we want new, fresh variable a encoding

 $a \Leftrightarrow (3x + 2y + z + w \ge 3)$

Introduce constraints

 $3\overline{a} + 3x + 2y + z + w \ge 3$ $5a + 3\overline{x} + 2\overline{y} + \overline{z} + \overline{w} \ge 5$

Should be fine, so long as *a* hasn't been used before.

Ciaran McCreesh

Is Your Combinatorial Search Algorithm Telling the Truth?

Practical Su 00000	Proof Logging for SAT	Beyond SAT	Stronger Proofs 000	Challenges 0000000	Propaganda 000

Symmetries

• If a solution exists, a solution where C < D exists.

Is Your Combinatorial Search Algorithm Telling the Truth?

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT ००००००००००००००००००००	Stronger Proofs	Challenges 0000000	Propaganda 000

Dominance

Can ignore vertex 2b.

• Every neighbour of 2b is also a neighbour of 2.

Progress So Far on World Domination

- SAT with symmetries, cardinality, XOR reasoning, MaxSAT.
 - Uncovered several undetected bugs in state of the art solvers.
 - Can't do MaxSAT hitting set solvers yet, MIP isn't proof logged.
- Certified translations from pseudo-Boolean to CNF.
- Clique, subgraph isomorphism, maximum common (connected) induced subgraph.
- Constraint programming.
 - Large integer variables.
 - Absolute value, all different, circuit, comparison, element, linear equality and inequality, minimum and maximum, regular, smart table constraints.
- In progress: MIP preprocessing for pseudo-Boolean problems, dynamic programming, the remaining 400 constraints for CP, ...

What Reasoning Can We Justify?

- With extension variables, as strong as Extended Frege.
- So according to theorists, we can simulate pretty much everything.

000000

What Reasoning Can We Justify?

- With extension variables, as strong as Extended Frege.
- So according to theorists, we can simulate pretty much everything.
 - Up to a polynomial factor...

Challenges

What Reasoning Can We Justify?

- With extension variables, as strong as Extended Frege.
- So according to theorists, we can simulate pretty much everything.
 - Up to a polynomial factor...
- Except dominance is apparently even stronger?

What Reasoning Can We Justify Efficiently?

- Quadratic overheads are unpleasant.
- Cutting planes is very good at justifying combinatorial arguments.
- It's not really clear why.

Verifying the Verifier

- How do we know the encoding is correct?
- How do we know the verifier is correct?
- How do we know the proof system is sound?

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT ००००००००००००००००००००	Challenges 0000000	Propaganda 000

Proof Trimming

- Proofs can be really really really big.
- Often many steps end up being redundant for the final proof.
- Could we make a tool that turns a really really really big proof into a really big proof?

Counting and Sampling without Enumerating

- The proof system deals with unsatisfiability.
- Satisfiability is easy, just give a solution.
- Optimisation is a solution and a proof there's nothing better.
- Enumeration is a solution list, and a proof there's nothing else.
- How do we provide a count without enumerating?

Going the Other Way

Can we use proofs to understand solver behaviour?

- Why solvers work so well when they shouldn't.
- Why solvers perform so badly when they shouldn't.
- Explainability?

Where We're At

- Can verify *solutions* from state of the art combinatorial solving algorithms, in a unified proof system.
- Found many undetected bugs in widely used solvers.
 - Including in algorithms that have been "proved" correct.

Where We're At

- Can verify *solutions* from state of the art combinatorial solving algorithms, in a unified proof system.
- Found many undetected bugs in widely used solvers.
 - Including in algorithms that have been "proved" correct.
- Not being either proof logged or formally verified should be considered socially unacceptable.

Where We're At

- Can verify *solutions* from state of the art combinatorial solving algorithms, in a unified proof system.
- Found many undetected bugs in widely used solvers.
 - Including in algorithms that have been "proved" correct.
- Not being either proof logged or formally verified should be considered socially unacceptable.
- Perhaps studying proof logs can help explain why solvers work so well?

Practical Subgraph-Finding 00000	Proof Logging for SAT	Beyond SAT ००००००००००००००००००००	Challenges 0000000	Propaganda o●o

Getting Involved

https://gitlab.com/MIAOresearch/software/VeriPB

https://www.youtube.com/watch?v=s_5BIi4I22w

https://ciaranm.github.io/

ciaran.mccreesh@glasgow.ac.uk

