
Is Your Combinatorial Search Algorithm Telling the Truth?

Ciaran McCreesh

ciaran.mccreesh@glasgow.ac.uk

University of Glasgow

How do you know whether your combinatorial search algorithm is implemented correctly?
You could try testing it, but even if you’re convinced you’ve done a thorough job, will
anyone else believe you? Another possibility is “correct by construction” software cre-
ated using formal methods—but these methods are far from being able to approach the
complexity or performance of modern satisfiability or constraint programming solvers. In
this talk I’ll tell you about a third option, called proof logging or certifying. The idea is
that, alongside a solution, an algorithm must produce a mathematical proof in a standard
format that demonstrates that the solution is correct. This proof can be verified by an
independent proof checker, which should be much simpler, and thus easier to trust. The
key challenge in getting this to work is to find a proof language which is both simple to
verify, and expressive enough to cover a wide range of solving techniques with very low
overheads. It’s not obvious that such a language should even exist, but I’ll argue that
cutting planes with a dominance-based extension rule might be exactly what we need:
even though cutting planes has no notion of what vertices, graphs, or even integers are, it
is strong enough to verify the reasoning used in state of the art algorithms for problems
like subgraph isomorphism, clique, and maximum common connected subgraph, and even
in constraint programming solvers.


