

Between Subgraph Isomorphism and Maximum Common Subgraph, How to make faster algorithms

Ruth Hoffmann, Mun See Chang, Ciaran McCreesh and Craig Reilly

Scottish Combinatorics Meeting, Strathclyde University

Intro ●00	Almost MCS 000000	Distillation 000000000	

Graph

Let G = (V, E) be a graph, with the vertex set V and edge set $E = \{(v, u) : v, u \in V\}.$

R Hoffmann

Intro		Almost MCS	Distillation	
000	00000000000	000000	0000000000	00

Applications

- Networks (Traffic, Public Transport, Computer, Social Media, Social, Disease, etc.)
- Chemical Compounds
- Protein Interactions
- Circuits
- Databases

Intro 000	Almost MCS 000000	Distillation 000000000	

Finding Patterns

- Find a smaller structure inside a larger ones.
- Find a common structure between two given ones.
- Permutation Patterns?
- Graph Patterns

	SIP	Almost MCS	Distillation	
000	000000000	000000	000000000	00

Subgraph Isomorphism Problem

Given two graphs $P = (V_P, E_P)$ and $T = (V_T, E_T)$ we try to find the pattern graph P inside the target graph T.

SIP	Almost MCS	Distillation	
000000000			

Non-Induced SIP

Given two graphs $P = (V_P, E_P)$ and $T = (V_T, E_T)$ we ask if there exists an injection $f : V_P \to V_T$ such that $(u, v) \in E_P$ iff $(f(u), f(v)) \in E_T$.

SIP ००●०००००००	Almost MCS 000000	Distillation 000000000	

Induced SIP

Given two graphs $P = (V_P, E_P)$ and $T = (V_T, E_T)$ we ask if there exists an injection $f : V_P \to V_T$ such that $(u, v) \in E_P$ iff $(f(u), f(v)) \in E_T$ and $(v, u) \notin E_P$ iff $(f(u), f(p)) \notin E_T$.

SIP	Almost MCS	Distillation	
000000000			

- SIP is NP-Complete
- Algorithms build on backtrack search where we keep matching v_P ∈ V_P with v_T ∈ V_T until it breaks f (and then we backtrack) or gives us a solution (when all v_P have been matched without breaking f).

SIP	Almost MCS	Distillation	
000000000			

R Hoffmann

SIP	Almost MCS	Distillation	
0000000000			

SIP	Almost MCS	Distillation	
0000000000			

R Hoffmann

SCM 2023

SIP	Almost MCS	Distillation	
00000000000			

R Hoffmann

SIP	Almost MCS	Distillation	
00000000000			

R Hoffmann

SCM 2023

SIP	Almost MCS	Distillation	
0000000000			

R Hoffmann

SIP	Almost MCS	Distillation	
000000000			

Improvements

Search can be "improved" (made more efficient) by creating new algorithms which use

- Colours (clique colourings)
- Auxiliary graphs
- Parallelism
- Specialised heuristics
- Graph properties

	Almost MCS •00000	Distillation 000000000	

k-less Subgraph Isomorphism

The *k*-less subgraph isomorphism $\kappa : P \to T$ is a subgraph isomorphism from all but *k* vertices of *P* to *T*. Can be induced and non-induced.

	Almost MCS ○●○○○○	Distillation 000000000	

Common Induced Subgraph

A common induced subgraph of graphs G and H is a graph P, such that there is an induced subgraph isomorphism from P to G and an induced subgraph isomorphism P to H.

	Almost MCS	Distillation 000000000	

Maximum Common Induced Subgraph

The common induced subgraph of graphs G and H is a graph P, such that there is an induced subgraph isomorphism from P to G and an induced subgraph isomorphism P to H such that there is no P' which is a common induced subgraph of G and H with $|V_{P'}| > |V_P|$.

ntro 200	Almost MCS	Distillation 000000000	

k-less in action in MCS

k-less SIP is essentially asking to find a common subgraph between P and T with $|V_P| - k$ vertices.

- Filtering using degrees
- Filtering during search using paths

	Almost MCS	Distillation	
	000000		

Degree filtering

- Let p be a vertex in P and t a vertex in T. For both non-induced and induced k-less subgraph isomorphisms, if $p \rightarrow t$ then $deg(p) - k \leq deg(t)$.
- If $p \rightarrow t$ then the neighbourhood degree sequence of p is less than or equal to the neighbourhood degree sequence of t.

We compare two sequences S and T and say that S is smaller than T is S is shorter or for all entries in S there exists a distinct entry in T which is greater or equal to it.

	Almost MCS	Distillation	
	00000		

Path Filtering

Let $p, q \in V_P$ and $t, u \in V_T$. If there is a k-less isomorphism in which $p \to t$ and $q \to u$ then paths $(p, q, 2) - k \le \text{paths}(t, u, 2)$.

	Almost MCS	Distillation	
		000000000	

No new algorithms

What about not coming up with new fancy algorithms? Can we make what is out there better with simple tweaks?

- What can we learn during search?
- Where are solutions likely to be?
- Can we guide search away (intelligently) from places the solution will not be?

We look at non-induced SIP (we know that one works).

	Almost MCS 000000	Distillation ○●○○○○○○○	

Distilling & Learning

R Hoffmann

	Almost MCS	Distillation	
		000000000	

Graph Homomorphism

A graph homomorphism h from $G = (V_G, E_G)$ to $H = (V_H, E_H)$ is a mapping $h : V_G \to V_H$ such that if $(u, v) \in E_G$ then $(h(u), h(v)) \in E_H$.

		Almost MCS	Distillation	
000	0000000000	000000	000000000	00

Distillation

We define $\delta(G)$ to be the quotient of G over the relation R where $u, v \in V_G$ are related $(u \sim_R v)$ if there exists a chain $(\Delta_1, \ldots, \Delta_k)$ (a chain of triangles of vertices in G) such that $u \in \Delta_1$ and $v \in \Delta_k$ and $\forall i, \exists j \leq i$ such that $\Delta_i \cap \Delta_j \neq \emptyset$.

Theorem

 δ is a graph homomorphism of G.

We call δ a distillation and $\delta(G) = \text{spirit}(G)$ the spirit of G.

	Almost MCS	Distillation	
0000000000	000000	000000000	00

Distillation Example

R Hoffmann

	Almost MCS 000000	Distillation 000000000	

Using Distillations to help SIP

If there exists a subgraph isomorphism f from a pattern graph P to a target graph T then there exists a homomorphism h from spirit(P) to spirit(T).

Intro 000	SIP 0000000000	Almost MCS 000000	Distillation 0000000000	??? 00
Examples				
(2,4) () ×5		×3 (1,3) (0,1)	0,1	
R Hoffmann				SCM 2023
Between SIP and MCS	5, Making Fast Algorithms			27 / 32

	Almost MCS 000000	Distillation 0000000000	

Examples

R Hoffmanr

		Almost MCS	Distillation	
			0000000000	
Exampl	es			

R Hoffmann

	SIP 0000000000	Almost MCS 000000	Distillation 000000000	??? 00
-				

Examples

R Hoffmanr

	Almost MCS	Distillation	???
			00

Will it work?

- The SIP/Homomorphism problem are (in essence) constraint satisfaction problems
- Everything we learn we can add as constraints
- Even from distilling
- And we can learn from distilling, because we know the distillation is structure preserving

	Almost MCS 000000	Distillation 000000000	??? 00

Will it go faster?

- For no solutions, (hopefully) definitely
- For a solution, maybe
- For many solutions, (hopefully) yes

Thank you!

$oldsymbol{O}$ ruthhoffmann

🔽 @ruthhoffmann

