Laguerre digraphs and continued fractions

Bishal Deb (he/him)

University College London

May 23, 2023 Scottish Combinatorics Meeting 2023

Based on Joint Work With Alex Dyachenko, Matthias Pétréolle, Alan Sokal Laguerre digraphs

- Ombinatorics of continued fractions
- Jacobi–Rogers matrix
- Biane history
- Foata–Zeilberger history
- List of applications

Laguerre digraphs

- Ombinatorics of continued fractions
- Jacobi–Rogers matrix
- Biane history
- Foata–Zeilberger history
- List of applications

Definition

A Laguerre digraph of size n is a directed graph where each vertex has a distinct label from the label set $\{1, \ldots, n\}$ and has indegree 0 or 1 and outdegree 0 or 1.

Definition

A Laguerre digraph of size n is a directed graph where each vertex has a distinct label from the label set $\{1, \ldots, n\}$ and has indegree 0 or 1 and outdegree 0 or 1.

Example:

.11 ,2 $0 \rightarrow 6 \rightarrow 10$

Connected components

.11 5 8->2 $9 \rightarrow 6 \rightarrow 10$

Connected components

.41 >2 8 $9 \rightarrow 6 \rightarrow 10$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

5131

Connected components

- Directed cycle
- Directed paths

Connected components

.41 >2 8 $9 \rightarrow 6 \rightarrow 10$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

5131

Connected components

- Directed cycle
- Directed paths

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways

No paths - Cyclic structure of permutations

$$\sigma = (1, 5, 2, 6, 7, 3)(4)$$

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways

No paths - Cyclic structure of permutations

$$\sigma = (1, 5, 2, 6, 7, 3)(4)$$

One path, no cycles - linear structure of permutation

 $\sigma = 5614273$

 $\mathrm{LD}_{n,k}$ - Set of Laguerre digraphs on n vertices with k paths

 $\mathrm{LD}_{n,k}$ - Set of Laguerre digraphs on n vertices with k paths Let $G\in\mathrm{LD}_{n,k}$

- $\operatorname{cyc}(G)$ number of cycles
- $\operatorname{pa}(G)$ number of paths

Here pa(G) = k

 $\mathrm{LD}_{n,k}$ - Set of Laguerre digraphs on n vertices with k paths Let $G\in\mathrm{LD}_{n,k}$

- $\operatorname{cyc}(G)$ number of cycles
- pa(G) number of paths

Here pa(G) = k

Proposition

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

In particular, $LD_{n,k}$ is enumerated by

$$\sum_{G \in \mathrm{LD}_{n,k}} \lambda^{\mathrm{cyc}(G)} = \binom{n}{k} (n-1+\lambda)(n-2+\lambda)\cdots(k+\lambda)$$

 $\mathrm{LD}_{n,k}$ - Set of Laguerre digraphs on n vertices with k paths Let $G\in\mathrm{LD}_{n,k}$

- $\operatorname{cyc}(G)$ number of cycles
- pa(G) number of paths

Here pa(G) = k

Proposition

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

In particular, $LD_{n,k}$ is enumerated by

$$\sum_{G \in \mathrm{LD}_{n,k}} \lambda^{\mathrm{cyc}(G)} = \binom{n}{k} (n-1+\lambda)(n-2+\lambda)\cdots(k+\lambda)$$

Therefore

$$|\mathrm{LD}_{n,k}| = \binom{n}{k} \frac{n!}{k!}$$

7131

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

Proof: Assign weights

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

Proof: Assign weights

- t each vertex
- x each path
- λ each cycle

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

Proof: Assign weights

- t each vertex
- x each path
- λ each cycle

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp \left(-\frac{1}{2} \sum_{i=1}^{\infty} \frac{t^n}{n!} \right) = \exp \left(-\frac{1}{2} \sum_{i=1}^{\infty} \frac{t^n}{n!} + \frac{1}{2} \sum_{i=1}^{\infty} \frac{t^n}{n!} \right)$$

Each Laguerre digraph is a labelled collection of

▲□▶▲御▶★≧▶★≧▶ 差 のへで

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

Proof: Assign weights

- t each vertex
- x each path
- λ each cycle

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t}\right)$$

Each Laguerre digraph is a labelled collection of directed paths and

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

Proof: Assign weights

- t each vertex
- x each path
- λ each cycle

$$\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_n} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^n}{n!} = \exp\left(\frac{xt}{1-t} + \lambda \log \frac{1}{1-t}\right)$$

Each Laguerre digraph is a labelled collection of directed paths and directed cycles

Laguerre polynomials are a sequence of orthogonal polynomials

$$L_n^{(\alpha)}(x) = \sum_{k=0}^n \binom{n+\alpha}{n-k} \frac{(-x)^k}{k!}$$

Laguerre polynomials are a sequence of orthogonal polynomials

$$L_{n}^{(\alpha)}(x) = \sum_{k=0}^{n} \binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}$$

Combinatorialists' Laguerre polynomials

$$\mathcal{L}_{n}^{(\alpha)}(x) = n! L_{n}^{(\alpha)}(-x) = \sum_{k=0}^{n} \binom{n}{k} (n+\alpha)(n-1+\alpha) \cdots (k+1+\alpha) x^{k}$$

Laguerre polynomials are a sequence of orthogonal polynomials

$$L_{n}^{(\alpha)}(x) = \sum_{k=0}^{n} \binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}$$

Combinatorialists' Laguerre polynomials

$$\mathcal{L}_{n}^{(\alpha)}(x) = n! L_{n}^{(\alpha)}(-x) = \sum_{k=0}^{n} \binom{n}{k} (n+\alpha)(n-1+\alpha) \cdots (k+1+\alpha) x^{k}$$

Foata-Strehl (1984)

$$\mathcal{L}_n^{(\alpha)}(x) = \sum_{k=0}^n \sum_{G \in \mathrm{LD}_{n,k}} (1+\alpha)^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)}$$

Laguerre polynomials are a sequence of orthogonal polynomials

$$L_{n}^{(\alpha)}(x) = \sum_{k=0}^{n} \binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}$$

Combinatorialists' Laguerre polynomials

$$\mathcal{L}_{n}^{(\alpha)}(x) = n! L_{n}^{(\alpha)}(-x) = \sum_{k=0}^{n} \binom{n}{k} (n+\alpha)(n-1+\alpha) \cdots (k+1+\alpha) x^{k}$$

Foata-Strehl (1984)

$$\mathcal{L}_n^{(\alpha)}(x) = \sum_{k=0}^n \sum_{G \in \mathrm{LD}_{n,k}} (1+\alpha)^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)}$$

Foata-Strehl called them Laguerre configurations

Foata-Strehl call them Laguerre configurations

Foata–Strehl call them Laguerre configurations Other authors often use partial permutations Foata-Strehl call them Laguerre configurations Other authors often use partial permutations Slightly different definitions Foata-Strehl call them Laguerre configurations Other authors often use partial permutations Slightly different definitions Laguerre digraphs after Sokal (2022)

Laguerre digraphs

Ombinatorics of continued fractions

- Jacobi–Rogers matrix
- Biane history
- Foata-Zeilberger history
- List of applications

Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}}$$

(ロ)、(部)、(主)、(主)、(主)、(12)(3) (12)(3)

Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

Jacobi-type continued fraction (J-fraction)

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

Associated C-fraction outside of combinatorial literature

Consider a Motzkin path, let's say

Consider a Motzkin path, let's say

Consider a Motzkin path, let's say

Assign weights:

- 🗡 : 1
- \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i
Consider a Motzkin path, let's say

Assign weights:

- 🗡 : 1
- \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i

Consider a Motzkin path, let's say

Assign weights:

- 🗡 : 1
- \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}}$$

<□▶<∄▶<불▶<불▶ 불 ∽੧< 14.131

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}} = \sum_{n=0}^{\infty} a_n t^n$$

<□▶<∄▶<불▶<불▶ 불 ∽੧< 14.131

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}} = \sum_{n=0}^{\infty} a_n t^n$$

Theorem (Flajolet '80)

The a_n are weighted sum of Motzkin paths with n steps.

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

Theorem (Flajolet '80)

The a_n are weighted sum of Motzkin paths with n steps.

Gateway for proving continued fractions using bijective combinatorics :-D

Laguerre digraphs

Ombinatorics of continued fractions

Jacobi–Rogers matrix

- Biane history
- Foata–Zeilberger history
- List of applications

Consider J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}}$$

(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)
(□)

Consider J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}} = \sum_{n=0}^{\infty} a_n t^n$$

Consider J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

Construct matrix \boldsymbol{J} with entries

 $J_{n,k}$ = Weighted sum of partial Motzkin paths (0,0) to (n,k)

Consider J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

Construct matrix \boldsymbol{J} with entries

 $J_{n,k}$ = Weighted sum of partial Motzkin paths (0,0) to (n,k)

Lower-triangular matrix with recurrence

Consider J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

Construct matrix \boldsymbol{J} with entries

 $J_{n,k}$ = Weighted sum of partial Motzkin paths (0,0) to (n,k)

Lower-triangular matrix with recurrence

$$\begin{aligned} \mathbf{J}_{n,n} &= 1 \\ \mathbf{J}_{n,k} &= \mathbf{J}_{n-1,k-1} + \gamma_k \mathbf{J}_{n-1,k} + \beta_{k+1} \mathbf{J}_{n-1,k+1} \end{aligned}$$

Consider J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

Construct matrix \boldsymbol{J} with entries

 $J_{n,k}$ = Weighted sum of partial Motzkin paths (0,0) to (n,k)

Lower-triangular matrix with recurrence

$$\begin{aligned} \mathbf{J}_{n,n} &= 1 \\ \mathbf{J}_{n,k} &= \mathbf{J}_{n-1,k-1} + \gamma_k \mathbf{J}_{n-1,k} + \beta_{k+1} \mathbf{J}_{n-1,k+1} \end{aligned}$$

Also known as Stieltjes table/tableau

$$\sum_{n=0}^{\infty} a_n t_n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

then

lf

$$\mathbf{J}_{n,0} = a_n$$

<ロト<部ト<基ト<基ト<基ト 基 のQの 17/31

$$\sum_{n=0}^{\infty} a_n t_n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

then

lf

$$\mathbf{J}_{n,0} = a_n$$

Question: If J-fraction for a_n is known, combinatorially understand matrix ${\bf J}$

Laguerre digraphs

- Ombinatorics of continued fractions
- Jacobi–Rogers matrix

Biane history

- Foata-Zeilberger history
- List of applications

$$1 + 1!t + 2!t^{2} + 3!t^{3} + 4!t^{4} + \dots = \frac{1}{1 - 1 \cdot t - \frac{1 \cdot t^{2}}{1 - 3 \cdot t - \frac{4 \cdot t^{2}}{1 - 5 \cdot t - \frac{9 \cdot t^{2}}{1 - \cdots}}}$$

(日)

$$1 + 1!t + 2!t^{2} + 3!t^{3} + 4!t^{4} + \dots = \frac{1}{1 - 1 \cdot t - \frac{1 \cdot t^{2}}{1 - 3 \cdot t - \frac{4 \cdot t^{2}}{1 - 5 \cdot t - \frac{9 \cdot t^{2}}{1 - \cdots}}}$$

Several bijective proofs known:

$$1 + 1!t + 2!t^{2} + 3!t^{3} + 4!t^{4} + \dots = \frac{1}{1 - 1 \cdot t - \frac{1 \cdot t^{2}}{1 - 3 \cdot t - \frac{4 \cdot t^{2}}{1 - 5 \cdot t - \frac{9 \cdot t^{2}}{1 - \cdots}}}$$

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ の < @

19131

Several bijective proofs known:

- Francon–Viennot (1979)
- Foata–Zeilberger (1990)
- Biane (1993)

$$1 + 1!t + 2!t^{2} + 3!t^{3} + 4!t^{4} + \dots = \frac{1}{1 - 1 \cdot t - \frac{1 \cdot t^{2}}{1 - 3 \cdot t - \frac{4 \cdot t^{2}}{1 - 5 \cdot t - \frac{9 \cdot t^{2}}{1 - \cdots}}}$$

Several bijective proofs known:

- Francon–Viennot (1979)
- Foata–Zeilberger (1990)
- Biane (1993)

Each permutation σ corresponds to (ω,ξ) where ω is Motzkin path and choice of labels ξ

In the Foata–Zeilberger and Biane bijections path is the same labels are different Example:

In the Foata–Zeilberger and Biane bijections path is the same labels are different Example: $\sigma = (1, 5, 2, 6, 7, 3)(4)$

.1

In the Foata–Zeilberger and Biane bijections path is the same labels are different

Example:

In the Foata–Zeilberger and Biane bijections path is the same labels are different

Example:

 $\sigma = (1, 5, 2, 6, 7, 3)(4)$

1

In the Foata–Zeilberger and Biane bijections path is the same labels are different

Example:

 $\sigma = (1, 5, 2, 6, 7, 3)(4)$

3,~>

In the Foata–Zeilberger and Biane bijections path is the same labels are different

Example:

In the Foata–Zeilberger and Biane bijections path is the same labels are different

Example:

In the Foata–Zeilberger and Biane bijections path is the same labels are different

Example:

In the Foata–Zeilberger and Biane bijections path is the same labels are different

Example:

When $a_n = n!$,

$$\sum_{n=0}^{\infty} a_n t_n = \frac{1}{1 - t - \frac{1t^2}{1 - 3t - \frac{4t^2}{1 - \ddots}}}$$
$$J_{n,k} = \binom{n}{k} \frac{n!}{k!}$$

These count Laguerre digraphs with k paths

Flag of Laguerre digraphs exhibiting Biane's construction

 \subset

Flag of Laguerre digraphs exhibiting Biane's construction

 \subset

Flag of Laguerre digraphs exhibiting Biane's construction

.1

Flag of Laguerre digraphs exhibiting Biane's construction

22 | 31

Flag of Laguerre digraphs exhibiting Biane's construction

Flag of Laguerre digraphs exhibiting Biane's construction

.1 • 2 .1 C.2 $\overline{}$ C $3 \rightarrow 1$ (i
Biane history

Flag of Laguerre digraphs exhibiting Biane's construction

.2 \subset .2 $\begin{array}{ccc} & 3 \longrightarrow 1 \\ C & \cdot 2 & 4 \end{array}$ 2.4 *

Biane history

Flag of Laguerre digraphs exhibiting Biane's construction

Biane history

Flag of Laguerre digraphs exhibiting Biane's construction

Laguerre digraphs

- Ombinatorics of continued fractions
- Jacobi–Rogers matrix
- Biane history
- Foata–Zeilberger history
- List of applications

Foata-Zeilberger history

Insertion of edges rather than vertices at each step

Define sets

- excedance indices $F = \{i \in [n] : \sigma(i) > i\}$
- anti-excedance indices $G = \{i \in [n] : \sigma(i) < i\}$
- fixed points H

Define sets

- excedance indices $F = \{i \in [n] : \sigma(i) > i\}$
- anti-excedance indices $G = \{i \in [n] : \sigma(i) < i\}$
- fixed points H

Start with all \boldsymbol{n} vertices and no edges

Define sets

- excedance indices $F = \{i \in [n] : \sigma(i) > i\}$
- anti-excedance indices $G = \{i \in [n] : \sigma(i) < i\}$
- fixed points H

Start with all \boldsymbol{n} vertices and no edges

At each stage insert edges $i \rightarrow \sigma(i)$

Define sets

- excedance indices $F = \{i \in [n] : \sigma(i) > i\}$
- anti-excedance indices $G = \{i \in [n] : \sigma(i) < i\}$
- fixed points H

Start with all \boldsymbol{n} vertices and no edges

At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:

Define sets

- excedance indices $F = \{i \in [n] : \sigma(i) > i\}$
- anti-excedance indices $G = \{i \in [n] : \sigma(i) < i\}$
- fixed points H

Start with all \boldsymbol{n} vertices and no edges

At each stage insert edges $i \rightarrow \sigma(i)$ in the following order: Stage 1: $i \in H$ in increasing order

Define sets

- excedance indices $F = \{i \in [n] : \sigma(i) > i\}$
- anti-excedance indices $G = \{i \in [n] : \sigma(i) < i\}$
- fixed points H

Start with all \boldsymbol{n} vertices and no edges

At each stage insert edges $i \to \sigma(i)$ in the following order: Stage 1: $i \in H$ in increasing order

Stage 2: $i \in G$ in increasing order

Define sets

- excedance indices $F = \{i \in [n] : \sigma(i) > i\}$
- anti-excedance indices $G = \{i \in [n] : \sigma(i) < i\}$
- fixed points H

Start with all \boldsymbol{n} vertices and no edges

At each stage insert edges $i \rightarrow \sigma(i)$ in the following order: Stage 1: $i \in H$ in increasing order

Stage 2: $i \in G$ in increasing order

Stage 3: $i \in F$ in decreasing order

Define sets

- excedance indices $F = \{i \in [n] : \sigma(i) > i\}$
- anti-excedance indices $G = \{i \in [n] : \sigma(i) < i\}$
- fixed points H

Start with all \boldsymbol{n} vertices and no edges

At each stage insert edges $i \rightarrow \sigma(i)$ in the following order: Stage 1: $i \in H$ in increasing order

Stage 2: $i \in G$ in increasing order

Stage 3: $i \in F$ in decreasing order

Twist in story: Can keep track of cycles being created using Foata–Zeilberger bijection

Laguerre digraphs

- Ombinatorics of continued fractions
- Jacobi–Rogers matrix
- Biane history
- Foata-Zeilberger history
- List of applications

For a permutation σ , compare each *i* with $\sigma(i)$ and $\sigma^{-1}(i)$:

For a permutation σ , compare each *i* with $\sigma(i)$ and $\sigma^{-1}(i)$:

▲□▶▲御▶★≧▶★≧▶ 差 のへで

26131

- cycle valley $\sigma^{-1}(i) > i < \sigma(i)$
- cycle peaks $\sigma^{-1}(i) < i > \sigma(i)$
- cycle double rise $\sigma^{-1}(i) < i < \sigma(i)$
- cycle double fall $\sigma^{-1}(i) > i > \sigma(i)$
- fixed point $i = \sigma(i) = \sigma^{-1}(i)$

Record classification

Consider σ as a word $\sigma(1)\sigma(2)\ldots\sigma(n)$:

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every i > j we have $\sigma(i) < \sigma(j)$ right-to-left-minima

Record classification

Consider σ as a word $\sigma(1)\sigma(2)\ldots\sigma(n)$:

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every i > j we have $\sigma(i) < \sigma(j)$ right-to-left-minima
- Each i is one of the following four types:

Record classification

Consider σ as a word $\sigma(1)\sigma(2)\ldots\sigma(n)$:

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every i > j we have $\sigma(i) < \sigma(j)$ right-to-left-minima
- Each i is one of the following four types:
 - rar record-antirecord
 - erec exclusive record
 - earec exclusive antirecord
 - nrar neither record-antirecord

- ereccval
- nrcval

- ereccval
- nrcval
- eareccpeak
- nrcpeak

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise
- eareccdfall
- nrcdfall

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise
- eareccdfall
- nrcdfall
- rar
- nrfix

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) = \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)} \end{split}$$

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)} \end{split}$$

No nice J-fraction!

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) = \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)} \end{split}$$

No nice J-fraction! But can obtain J-fraction by specialising $y_1 = v_1$:

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) = \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)} \end{split}$$

No nice J-fraction! But can obtain J-fraction by specialising $y_1 = v_1$:

Theorem (D. (2023), Conjectured by Sokal-Zeng (2022))

$$= \frac{\sum_{n=0}^{\infty} P_n(x_1, x_2, y_1, y_2, u_1, u_2, y_1, v_2, w, z, \lambda)t^n}{\frac{1}{1 - \lambda z \cdot t - \frac{\lambda x_1 y_1 \cdot t^2}{1 - (x_2 + y_2 + \lambda w) \cdot t - \frac{(\lambda + 1)(x_1 + u_1)y_1 \cdot t^2}{1 - ((x_2 + v_2) + (y_2 + v_2) + \lambda w) \cdot t - \frac{(\lambda + 2)(x_1 + 2u_1)y_1 \cdot t^2}{1 - \ddots}}}$$

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) = \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{earcccpeak}(\sigma)} x_2^{\text{earcccdfall}(\sigma)} y_1^{\text{ercccval}(\sigma)} y_2^{\text{ercccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrccpeak}(\sigma)} u_2^{\text{nrccdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)} \end{split}$$

No nice J-fraction! But can obtain J-fraction by specialising $y_1 = v_1$:

Theorem (D. (2023), Conjectured by Sokal–Zeng (2022))

$$= \frac{\sum_{n=0}^{\infty} P_n(x_1, x_2, y_1, y_2, u_1, u_2, y_1, v_2, w, z, \lambda) t^n}{\frac{1}{1 - \lambda z \cdot t - \frac{\lambda x_1 y_1 \cdot t^2}{1 - (x_2 + y_2 + \lambda w) \cdot t - \frac{(\lambda + 1)(x_1 + u_1)y_1 \cdot t^2}{1 - ((x_2 + v_2) + (y_2 + v_2) + \lambda w) \cdot t - \frac{(\lambda + 2)(x_1 + 2u_1)y_1 \cdot t^2}{1 - \ddots}}}$$

Can also prove a 4-variable continued fraction conjectured in 1996 by Randrianarivony–Zeng.

• [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics

- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal '23] Can interpret Jacobi-Rogers matrix for secant numbers

- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal '23] Can interpret Jacobi-Rogers matrix for secant numbers
- [D., Dyachenko, Pétréolle, Sokal, ongoing] New bijection between labelled 2-Łukasiewicz paths and Laguerre digraphs

- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal '23] Can interpret Jacobi-Rogers matrix for secant numbers
- [D., Dyachenko, Pétréolle, Sokal, ongoing] New bijection between labelled 2-Łukasiewicz paths and Laguerre digraphs Can count statistics on Laguerre digraphs generalising several permutation statistics

- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal '23] Can interpret Jacobi-Rogers matrix for secant numbers
- [D., Dyachenko, Pétréolle, Sokal, ongoing] New bijection between labelled 2-Łukasiewicz paths and Laguerre digraphs Can count statistics on Laguerre digraphs generalising several permutation statistics Branched continued fractions for Laguerre polynomials and total positivity

