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Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph where each vertex has a
distinct label from the label set {1, . . . , n} and has indegree 0 or 1 and
outdegree 0 or 1.

Example:
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Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways

1 No paths - Cyclic structure of permutations

σ = (1,5,2,6,7,3)(4)

2 One path, no cycles - linear structure of permutation

σ = 5614273
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Enumeration

LDn,k - Set of Laguerre digraphs on n vertices with k paths

Let G ∈ LDn,k

cyc(G) - number of cycles

pa(G) - number of paths

Here pa(G) = k

Proposition

∞
∑
n=0

∑
G∈LDn

λcyc(G)xpa(G) t
n

n!
= exp(

xt

1 − t
+ λ log

1

1 − t
)

In particular, LDn,k is enumerated by

∑
G∈LDn,k

λcyc(G)
= (

n

k
)(n − 1 + λ)(n − 2 + λ)⋯(k + λ)

Therefore

∣LDn,k ∣ = (
n

k
)
n!

k!
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Enumeration

Proposition

∞
∑
n=0

∑
G∈LDn

λcyc(G)xpa(G) t
n

n!
= exp(

xt

1 − t
+ λ log

1

1 − t
)

Proof: Assign weights

t - each vertex

x - each path

λ - each cycle

∞
∑
n=0

∑
G∈LDn

λcyc(G)xpa(G) t
n

n!
= exp(

xt

1 − t
+ λ log

1

1 − t
)

Each Laguerre digraph is a labelled collection of directed paths and
directed cycles
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Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

L(α)n (x) =
n

∑
k=0

(
n + α

n − k
)
(−x)k

k!

Combinatorialists’ Laguerre polynomials

L
(α)
n (x) = n!L(α)n (−x) =

n

∑
k=0

(
n

k
)(n + α)(n − 1 + α)⋯(k + 1 + α)xk

Foata–Strehl (1984)

L
(α)
n (x) =

n

∑
k=0

∑
G∈LDn,k

(1 + α)cyc(G)xpa(G)

Foata–Strehl called them Laguerre configurations
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Nomenclature

Foata–Strehl call them Laguerre configurations

Other authors often use partial permutations

Slightly different definitions

Laguerre digraphs after Sokal (2022)
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Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

=
∞
∑
n=0

ant
n

Associated C-fraction outside of combinatorial literature
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Motzkin paths

Consider a Motzkin path, let’s say

β1

β2

β3

β4γ3

γ2

β4

Weight = β1β2β3β
2
4γ2γ3

Assign weights:

↗ : 1

→ from height i→ i : γi

↘ from height i→ (i − 1) : βi

13 31
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Combinatorial Interpretation of J-fraction
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1
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β1t

2
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2

1 − γ2t −
β3t

2

⋱

=
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n=0

ant
n

Theorem (Flajolet ’80)

The an are weighted sum of Motzkin paths with n steps.

Gateway for proving continued fractions using bijective combinatorics :-D
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Jacobi–Rogers Matrix

Consider J-fraction

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

=
∞
∑
n=0

ant
n

Construct matrix J with entries

Jn,k = Weighted sum of partial Motzkin paths (0,0) to (n, k)

Lower-triangular matrix with recurrence

Jn,n = 1

Jn,k = Jn−1,k−1 + γkJn−1,k + βk+1Jn−1,k+1

Also known as Stieltjes table/tableau

16 31



Jacobi–Rogers Matrix

Consider J-fraction

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

=
∞
∑
n=0

ant
n

Construct matrix J with entries

Jn,k = Weighted sum of partial Motzkin paths (0,0) to (n, k)

Lower-triangular matrix with recurrence

Jn,n = 1

Jn,k = Jn−1,k−1 + γkJn−1,k + βk+1Jn−1,k+1

Also known as Stieltjes table/tableau

16 31



Jacobi–Rogers Matrix

Consider J-fraction

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

=
∞
∑
n=0

ant
n

Construct matrix J with entries

Jn,k = Weighted sum of partial Motzkin paths (0,0) to (n, k)

Lower-triangular matrix with recurrence

Jn,n = 1

Jn,k = Jn−1,k−1 + γkJn−1,k + βk+1Jn−1,k+1

Also known as Stieltjes table/tableau

16 31



Jacobi–Rogers Matrix

Consider J-fraction

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

=
∞
∑
n=0

ant
n

Construct matrix J with entries

Jn,k = Weighted sum of partial Motzkin paths (0,0) to (n, k)

Lower-triangular matrix with recurrence

Jn,n = 1

Jn,k = Jn−1,k−1 + γkJn−1,k + βk+1Jn−1,k+1

Also known as Stieltjes table/tableau

16 31



Jacobi–Rogers Matrix

Consider J-fraction

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

=
∞
∑
n=0

ant
n

Construct matrix J with entries

Jn,k = Weighted sum of partial Motzkin paths (0,0) to (n, k)

Lower-triangular matrix with recurrence

Jn,n = 1

Jn,k = Jn−1,k−1 + γkJn−1,k + βk+1Jn−1,k+1

Also known as Stieltjes table/tableau

16 31



Jacobi–Rogers Matrix

Consider J-fraction

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

=
∞
∑
n=0

ant
n

Construct matrix J with entries

Jn,k = Weighted sum of partial Motzkin paths (0,0) to (n, k)

Lower-triangular matrix with recurrence

Jn,n = 1

Jn,k = Jn−1,k−1 + γkJn−1,k + βk+1Jn−1,k+1

Also known as Stieltjes table/tableau

16 31



If ∞
∑
n=0

antn =
1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − ⋱

then
Jn,0 = an

Question: If J-fraction for an is known, combinatorially understand
matrix J
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Jacobi-type continued fraction for n!:

1 + 1!t + 2!t2 + 3!t3 + 4!t4 + . . . =
1

1 − 1 ⋅ t −
1 ⋅ t2

1 − 3 ⋅ t −
4 ⋅ t2

1 − 5 ⋅ t −
9 ⋅ t2

1 − ⋱

Several bijective proofs known:

Francon–Viennot (1979)

Foata–Zeilberger (1990)

Biane (1993)

Each permutation σ corresponds to (ω, ξ) where ω is Motzkin path and
choice of labels ξ
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Construction of path for n!

In the Foata–Zeilberger and Biane bijections path is the same labels are
different
Example:
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When an = n!,

∞
∑
n=0

antn =
1

1 − t −
1t2

1 − 3t −
4t2

1 − ⋱

Jn,k = (
n

k
)
n!

k!

These count Laguerre digraphs with k paths
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Biane history

Flag of Laguerre digraphs exhibiting Biane’s construction
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Structure

1 Laguerre digraphs

2 Combinatorics of continued fractions

3 Jacobi–Rogers matrix

4 Biane history

5 Foata–Zeilberger history

6 List of applications
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Foata–Zeilberger history

Insertion of edges rather than vertices at each step

Define sets

excedance indices F = {i ∈ [n] ∶ σ(i) > i}

anti-excedance indices G = {i ∈ [n] ∶ σ(i) < i}

fixed points H

Start with all n vertices and no edges

At each stage insert edges i→ σ(i) in the following order:
Stage 1: i ∈H in increasing order

Stage 2: i ∈ G in increasing order

Stage 3: i ∈ F in decreasing order

Twist in story: Can keep track of cycles being created using
Foata–Zeilberger bijection
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Cycle classification

For a permutation σ, compare each i with σ(i) and σ−1(i):

cycle valley σ−1(i) > i < σ(i)

cycle peaks σ−1(i) < i > σ(i)

cycle double rise σ−1(i) < i < σ(i)

cycle double fall σ−1(i) > i > σ(i)

fixed point i = σ(i) = σ−1(i)
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Record classification

Consider σ as a word σ(1)σ(2) . . . σ(n):

i is record if for every j < i we have σ(j) < σ(i)
left-to-right-maxima

i is antirecord if for every i > j we have σ(i) < σ(j)
right-to-left-minima

Each i is one of the following four types:

rar - record-antirecord

erec - exclusive record

earec - exclusive antirecord

nrar - neither record-antirecord
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Record-and-cycle classification

Each i is one of the following ten (not 20) types:

ereccval

nrcval

eareccpeak

nrcpeak

ereccdrise

nrcdrise

eareccdfall

nrcdfall

rar

nrfix
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Continued fractions counting permutation statistics

Consider 11-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ)

×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)λcyc(σ)

No nice J-fraction!
But can obtain J-fraction by specialising y1 = v1:

Theorem (D. (2023), Conjectured by Sokal–Zeng (2022))

∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, y1, v2,w, z, λ)t
n

=
1

1 − λz ⋅ t −
λx1 y1 ⋅ t

2

1 − (x2 + y2 + λw) ⋅ t −
(λ + 1)(x1 + u1)y1 ⋅ t

2

1 − ((x2 + v2) + (y2 + v2) + λw) ⋅ t −
(λ + 2)(x1 + 2u1)y1 ⋅ t

2

1 − ⋱

Can also prove a 4-variable continued fraction conjectured in 1996 by
Randrianarivony–Zeng.
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[D., Sokal, ’22] Have obtained continued fractions for Genocchi and
median Genocchi numbers counting various statistics

[D., Sokal ’23] Can interpret Jacobi-Rogers matrix for secant
numbers

[D., Dyachenko, Pétréolle, Sokal, ongoing] New bijection between
labelled 2- Lukasiewicz paths and Laguerre digraphs
Can count statistics on Laguerre digraphs generalising several
permutation statistics
Branched continued fractions for Laguerre polynomials and total
positivity
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Thank you
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