Laguerre digraphs and continued fractions

Bishal Deb (he/him)
University College London

May 23, 2023
Scottish Combinatorics Meeting 2023

Based on Joint Work With
Alex Dyachenko, Matthias Pétréolle, Alan Sokal
(1) Laguerre digraphs
(2) Combinatorics of continued fractions
(Jacobi-Rogers matrix

- Biane history
© Foata-Zeilberger history
- List of applications

Structure

(1) Laguerre digraphs
(2) Combinatorics of continued fractions

- Jacobi-Rogers matrix
- Biane history
- Foata-Zeilberger history
- List of applications

Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph where each vertex has a distinct label from the label set $\{1, \ldots, n\}$ and has indegree 0 or 1 and outdegree 0 or 1 .

Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph where each vertex has a distinct label from the label set $\{1, \ldots, n\}$ and has indegree 0 or 1 and outdegree 0 or 1 .

Example:

Connected components

Connected components

Connected components

- Directed cycle
- Directed paths

Connected components

Connected components

- Directed cycle
- Directed paths

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways
(1) No paths - Cyclic structure of permutations

$$
\sigma=(1,5,2,6,7,3)(4)
$$

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways
(1) No paths - Cyclic structure of permutations

$$
\sigma=(1,5,2,6,7,3)(4)
$$

(2) One path, no cycles - linear structure of permutation

Enumeration

$\mathrm{LD}_{n, k}$ - Set of Laguerre digraphs on n vertices with k paths

Enumeration

$\mathrm{LD}_{n, k}$ - Set of Laguerre digraphs on n vertices with k paths
Let $G \in \mathrm{LD}_{n, k}$
$\operatorname{cyc}(G)$ - number of cycles
$\mathrm{pa}(G)$ - number of paths
Here $\mathrm{pa}(G)=k$

Enumeration

$\mathrm{LD}_{n, k}$ - Set of Laguerre digraphs on n vertices with k paths
Let $G \in \mathrm{LD}_{n, k}$
$\operatorname{cyc}(G)$ - number of cycles
$\mathrm{pa}(G)$ - number of paths
Here pa $(G)=k$

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

In particular, $\mathrm{LD}_{n, k}$ is enumerated by

$$
\sum_{G \in \mathrm{LD}_{n, k}} \lambda^{\operatorname{cyc}(G)}=\binom{n}{k}(n-1+\lambda)(n-2+\lambda) \cdots(k+\lambda)
$$

Enumeration

$\mathrm{LD}_{n, k}$ - Set of Laguerre digraphs on n vertices with k paths
Let $G \in \mathrm{LD}_{n, k}$
$\operatorname{cyc}(G)$ - number of cycles
$\mathrm{pa}(G)$ - number of paths
Here $\mathrm{pa}(G)=k$

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

In particular, $\mathrm{LD}_{n, k}$ is enumerated by

$$
\sum_{G \in \operatorname{LD}_{n, k}} \lambda^{\operatorname{cyc}(G)}=\binom{n}{k}(n-1+\lambda)(n-2+\lambda) \cdots(k+\lambda)
$$

Therefore

$$
\left|\mathrm{LD}_{n, k}\right|=\binom{n}{k} \frac{n!}{k!}
$$

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

- t - each vertex
- x - each path
- λ - each cycle

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

- t - each vertex
- x - each path
- λ - each cycle

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp (
$$

Each Laguerre digraph is a labelled collection of

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

- t - each vertex
- x - each path
- λ - each cycle

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}\right.
$$

Each Laguerre digraph is a labelled collection of directed paths and

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

- t - each vertex
- x - each path
- λ - each cycle

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Each Laguerre digraph is a labelled collection of directed paths and directed cycles

Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

$$
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}
$$

Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

$$
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}
$$

Combinatorialists' Laguerre polynomials

$$
\mathcal{L}_{n}^{(\alpha)}(x)=n!L_{n}^{(\alpha)}(-x)=\sum_{k=0}^{n}\binom{n}{k}(n+\alpha)(n-1+\alpha) \cdots(k+1+\alpha) x^{k}
$$

Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

$$
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}
$$

Combinatorialists' Laguerre polynomials

$$
\mathcal{L}_{n}^{(\alpha)}(x)=n!L_{n}^{(\alpha)}(-x)=\sum_{k=0}^{n}\binom{n}{k}(n+\alpha)(n-1+\alpha) \cdots(k+1+\alpha) x^{k}
$$

Foata-Strehl (1984)

$$
\mathcal{L}_{n}^{(\alpha)}(x)=\sum_{k=0}^{n} \sum_{G \in \mathrm{LD}_{n, k}}(1+\alpha)^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)}
$$

Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

$$
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}
$$

Combinatorialists' Laguerre polynomials

$$
\mathcal{L}_{n}^{(\alpha)}(x)=n!L_{n}^{(\alpha)}(-x)=\sum_{k=0}^{n}\binom{n}{k}(n+\alpha)(n-1+\alpha) \cdots(k+1+\alpha) x^{k}
$$

Foata-Strehl (1984)

$$
\mathcal{L}_{n}^{(\alpha)}(x)=\sum_{k=0}^{n} \sum_{G \in \mathrm{LD}_{n, k}}(1+\alpha)^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)}
$$

Foata-Strehl called them Laguerre configurations

Nomenclature

Foata-Strehl call them Laguerre configurations

Nomenclature

Foata-Strehl call them Laguerre configurations
Other authors often use partial permutations

Nomenclature

Foata-Strehl call them Laguerre configurations
Other authors often use partial permutations
Slightly different definitions

Nomenclature

Foata-Strehl call them Laguerre configurations
Other authors often use partial permutations
Slightly different definitions
Laguerre digraphs after Sokal (2022)

Structure

(1) Laguerre digraphs

(2) Combinatorics of continued fractions

- Jacobi-Rogers matrix
- Biane history
- Foata-Zeilberger history
- List of applications

Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)

Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Combinatorial Interpretation of J-fraction

Jacobi-type continued fraction (J-fraction)

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Associated C-fraction outside of combinatorial literature

Motzkin paths

Consider a Motzkin path, let's say

Motzkin paths

Consider a Motzkin path, let's say

Motzkin paths

Consider a Motzkin path, let's say

Assign weights:

- л: 1
- \rightarrow from height $i \rightarrow i: \gamma_{i}$
- \searrow from height $i \rightarrow(i-1): \beta_{i}$

Motzkin paths

Consider a Motzkin path, let's say

Assign weights:

- л: 1
- \rightarrow from height $i \rightarrow i: \gamma_{i}$
- \searrow from height $i \rightarrow(i-1): \beta_{i}$

Motzkin paths

Consider a Motzkin path, let's say

Weight $=\beta_{1} \beta_{2} \beta_{3} \beta_{4}^{2} \gamma_{2} \gamma_{3}$
Assign weights:

- л: 1
- \rightarrow from height $i \rightarrow i: \gamma_{i}$
- \searrow from height $i \rightarrow(i-1): \beta_{i}$

Combinatorial Interpretation of J-fraction

J-fraction

Combinatorial Interpretation of J-fraction

J-fraction
$\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}$

Combinatorial Interpretation of J-fraction

J-fraction

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Theorem (Flajolet '80)

The a_{n} are weighted sum of Motzkin paths with n steps.

Combinatorial Interpretation of J-fraction

J-fraction

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Theorem (Flajolet '80)

The a_{n} are weighted sum of Motzkin paths with n steps.
Gateway for proving continued fractions using bijective combinatorics :-D

Structure

(1) Laguerre digraphs

(2) Combinatorics of continued fractions
(3) Jacobi-Rogers matrix

- Biane history
- Foata-Zeilberger history
- List of applications

Jacobi-Rogers Matrix

Consider J-fraction
$\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}$

Jacobi-Rogers Matrix

Consider J-fraction
$\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{\ddots}}}}=\sum_{n=0}^{\infty} a_{n} t^{n}$

Jacobi-Rogers Matrix

Consider J-fraction

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{\beta_{n} t^{2}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Construct matrix J with entries

$$
\mathrm{J}_{n, k}=\text { Weighted sum of partial Motzkin paths }(0,0) \text { to }(n, k)
$$

Jacobi-Rogers Matrix

Consider J-fraction

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{\beta_{-} t^{2}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Construct matrix J with entries

$$
\mathrm{J}_{n, k}=\text { Weighted sum of partial Motzkin paths }(0,0) \text { to }(n, k)
$$

Lower-triangular matrix with recurrence

Jacobi-Rogers Matrix

Consider J-fraction

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{\beta^{+2}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Construct matrix J with entries

$$
\mathrm{J}_{n, k}=\text { Weighted sum of partial Motzkin paths }(0,0) \text { to }(n, k)
$$

Lower-triangular matrix with recurrence

$$
\begin{aligned}
\mathrm{J}_{n, n} & =1 \\
\mathrm{~J}_{n, k} & =\mathrm{J}_{n-1, k-1}+\gamma_{k} \mathrm{~J}_{n-1, k}+\beta_{k+1} \mathrm{~J}_{n-1, k+1}
\end{aligned}
$$

Jacobi-Rogers Matrix

Consider J-fraction

$$
\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{\rho^{2}}}=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Construct matrix J with entries

$$
\mathrm{J}_{n, k}=\text { Weighted sum of partial Motzkin paths }(0,0) \text { to }(n, k)
$$

Lower-triangular matrix with recurrence

$$
\begin{aligned}
\mathrm{J}_{n, n} & =1 \\
\mathrm{~J}_{n, k} & =\mathrm{J}_{n-1, k-1}+\gamma_{k} \mathrm{~J}_{n-1, k}+\beta_{k+1} \mathrm{~J}_{n-1, k+1}
\end{aligned}
$$

Also known as Stieltjes table/tableau

If

$$
\sum_{n=0}^{\infty} a_{n} t_{n}=\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\ddots}}}
$$

then

$$
\mathrm{J}_{n, 0}=a_{n}
$$

If

$$
\sum_{n=0}^{\infty} a_{n} t_{n}=\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\ddots}}}
$$

then

$$
\mathrm{J}_{n, 0}=a_{n}
$$

Question: If J-fraction for a_{n} is known, combinatorially understand matrix J

Structure

© Laguerre digraphs
(3) Combinatorics of continued fractions

- Jacobi-Rogers matrix
- Biane history
- Foata-Zeilberger history
- List of applications

Jacobi-type continued fraction for $n!$:

$$
1+1!t+2!t^{2}+3!t^{3}+4!t^{4}+\ldots=\frac{1}{1-1 \cdot t-\frac{1 \cdot t^{2}}{1-3 \cdot t-\frac{4 \cdot t^{2}}{1-5 \cdot t-\frac{9 \cdot t^{2}}{1-\cdot}}}}
$$

Jacobi-type continued fraction for $n!$:

$$
1+1!t+2!t^{2}+3!t^{3}+4!t^{4}+\ldots=\frac{1}{1-1 \cdot t-\frac{1 \cdot t^{2}}{1-3 \cdot t-\frac{4 \cdot t^{2}}{1-5 \cdot t-\frac{9 \cdot t^{2}}{1-\cdot}}}}
$$

Several bijective proofs known:

Jacobi-type continued fraction for $n!$:

$$
1+1!t+2!t^{2}+3!t^{3}+4!t^{4}+\ldots=\frac{1}{1-1 \cdot t-\frac{1 \cdot t^{2}}{1-3 \cdot t-\frac{4 \cdot t^{2}}{1-5 \cdot t-\frac{9 \cdot t^{2}}{1-\cdot}}}}
$$

Several bijective proofs known:

- Francon-Viennot (1979)
- Foata-Zeilberger (1990)
- Biane (1993)

Jacobi-type continued fraction for $n!$:

$$
1+1!t+2!t^{2}+3!t^{3}+4!t^{4}+\ldots=\frac{1}{1-1 \cdot t-\frac{1 \cdot t^{2}}{1-3 \cdot t-\frac{4 \cdot t^{2}}{1-5 \cdot t-\frac{9 \cdot t^{2}}{1-\cdot}}}}
$$

Several bijective proofs known:

- Francon-Viennot (1979)
- Foata-Zeilberger (1990)
- Biane (1993)

Each permutation σ corresponds to (ω, ξ) where ω is Motzkin path and choice of labels ξ

Construction of path for n !

In the Foata-Zeilberger and Biane bijections path is the same labels are different
Example:

Construction of path for n !

In the Foata-Zeilberger and Biane bijections path is the same labels are different
Example:
$\sigma=(1,5,2,6,7,3)(4)$

Construction of path for n !

In the Foata-Zeilberger and Biane bijections path is the same labels are different
Example:
$\sigma=(1,5,2,6,7,3)(4)$

Construction of path for n !

In the Foata-Zeilberger and Biane bijections path is the same labels are different
Example:
$\sigma=(1,5,2,6,7,3)(4)$

Construction of path for n !
In the Foata-Zeilberger and Diane bijections path is the same labels are different
Example:

$$
\sigma=(1,5,2,6,7,3)(4)
$$

$$
3 \xrightarrow{ } 1
$$

Construction of path for n !
In the Foata-Zeilberger and Diane bijections path is the same labels are different
Example:

$$
\sigma=(1,5,2,6,7,3)(4)
$$

$$
3 \rightarrow{ }^{1}
$$

$$
{ }_{4}^{2}
$$

$$
.2
$$

Construction of path for n !

In the Foata-Zeilberger and Biane bijections path is the same labels are different
Example:
$\sigma=(1,5,2,6,7,3)(4)$

4

Construction of path for n !

In the Foata-Zeilberger and Biane bijections path is the same labels are different
Example:
$\sigma=(1,5,2,6,7,3)(4)$

Construction of path for n !

In the Foata-Zeilberger and Biane bijections path is the same labels are different
Example:
$\sigma=(1,5,2,6,7,3)(4)$

${ }_{4}^{2}$

When $a_{n}=n!$,

$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{n} t_{n}=\frac{1}{1-t-\frac{1 t^{2}}{1-3 t-\frac{4 t^{2}}{1-\ddots}}} \\
\mathrm{J}_{n, k}=\binom{n}{k} \frac{n!}{k!}
\end{gathered}
$$

These count Laguerre digraphs with k paths

Biane history

Flag of Laguerre digraphs exhibiting Biane's construction

Biane history

Flag of Laguerre digraphs exhibiting Biane's construction

Biane history

Flag of Laguerre digraphs exhibiting Biane's construction

Biane history

Flag of Laguerre digraphs exhibiting Biane's construction

Bane history
Flag of Laguerre digraphs exhibiting Biane's construction

Biane history

Flag of Laguerre digraphs exhibiting Biane's construction

Bane history
Flag of Laguerre digraphs exhibiting Biane's construction

Bane history
Flag of Laguerre digraphs exhibiting Biane's construction

$3 \rightarrow 1$
c
. 2

.1
$3 \rightarrow{ }^{1}$

- 2

$$
C \prod_{2}^{1} \quad C
$$

Bane history
Flag of Laguerre digraphs exhibiting Biane's construction

Structure

(ㄷ) Laguerre digraphs
(2) Combinatorics of continued fractions

- Jacobi-Rogers matrix
- Biane history
(Foata-Zeilberger history
- List of applications

Foata-Zeilberger history

Insertion of edges rather than vertices at each step

Foata-Zeilberger history

Insertion of edges rather than vertices at each step
Define sets

- excedance indices $F=\{i \in[n]: \sigma(i)>i\}$
- anti-excedance indices $G=\{i \in[n]: \sigma(i)<i\}$
- fixed points H

Foata-Zeilberger history

Insertion of edges rather than vertices at each step
Define sets

- excedance indices $F=\{i \in[n]: \sigma(i)>i\}$
- anti-excedance indices $G=\{i \in[n]: \sigma(i)<i\}$
- fixed points H

Start with all n vertices and no edges

Foata-Zeilberger history

Insertion of edges rather than vertices at each step
Define sets

- excedance indices $F=\{i \in[n]: \sigma(i)>i\}$
- anti-excedance indices $G=\{i \in[n]: \sigma(i)<i\}$
- fixed points H

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$

Foata-Zeilberger history

Insertion of edges rather than vertices at each step
Define sets

- excedance indices $F=\{i \in[n]: \sigma(i)>i\}$
- anti-excedance indices $G=\{i \in[n]: \sigma(i)<i\}$
- fixed points H

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:

Foata-Zeilberger history

Insertion of edges rather than vertices at each step
Define sets

- excedance indices $F=\{i \in[n]: \sigma(i)>i\}$
- anti-excedance indices $G=\{i \in[n]: \sigma(i)<i\}$
- fixed points H

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:
Stage 1: $i \in H$ in increasing order

Foata-Zeilberger history

Insertion of edges rather than vertices at each step
Define sets

- excedance indices $F=\{i \in[n]: \sigma(i)>i\}$
- anti-excedance indices $G=\{i \in[n]: \sigma(i)<i\}$
- fixed points H

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:
Stage 1: $i \in H$ in increasing order
Stage 2: $i \in G$ in increasing order

Foata-Zeilberger history

Insertion of edges rather than vertices at each step
Define sets

- excedance indices $F=\{i \in[n]: \sigma(i)>i\}$
- anti-excedance indices $G=\{i \in[n]: \sigma(i)<i\}$
- fixed points H

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:
Stage 1: $i \in H$ in increasing order
Stage 2: $i \in G$ in increasing order
Stage 3: $i \in F$ in decreasing order

Foata-Zeilberger history

Insertion of edges rather than vertices at each step
Define sets

- excedance indices $F=\{i \in[n]: \sigma(i)>i\}$
- anti-excedance indices $G=\{i \in[n]: \sigma(i)<i\}$
- fixed points H

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:
Stage 1: $i \in H$ in increasing order
Stage 2: $i \in G$ in increasing order
Stage 3: $i \in F$ in decreasing order
Twist in story: Can keep track of cycles being created using Foata-Zeilberger bijection

Structure

© Laguerre digraphs
(3) Combinatorics of continued fractions

- Jacobi-Rogers matrix
- Biane history
- Foata-Zeilberger history
(0) List of applications

Cycle classification

For a permutation σ, compare each i with $\sigma(i)$ and $\sigma^{-1}(i)$:

Cycle classification

For a permutation σ, compare each i with $\sigma(i)$ and $\sigma^{-1}(i)$:

- cycle valley $\sigma^{-1}(i)>i<\sigma(i)$
- cycle peaks $\sigma^{-1}(i)<i>\sigma(i)$
- cycle double rise $\sigma^{-1}(i)<i<\sigma(i)$
- cycle double fall $\sigma^{-1}(i)>i>\sigma(i)$
- fixed point $i=\sigma(i)=\sigma^{-1}(i)$

Consider σ as a word $\sigma(1) \sigma(2) \ldots \sigma(n)$:

- i is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- i is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima

Consider σ as a word $\sigma(1) \sigma(2) \ldots \sigma(n)$:

- i is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- i is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima
Each i is one of the following four types:

Consider σ as a word $\sigma(1) \sigma(2) \ldots \sigma(n)$:

- i is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- i is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima
Each i is one of the following four types:
- rar - record-antirecord

- erec - exclusive record $\frac{1 / 2}{+2}$,
- earec - exclusive antirecord $\stackrel{1 / 4}{\mid \%}$
- nrar - neither record-antirecord \#

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

- ereccval
- nrcval

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

- ereccval
- nrcval
- eareccpeak
- nrcpeak

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise
- eareccdfall
- nrcdfall

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

- ereccval
- nrcval
- eareccpeak
- nrcpeak
- ereccdrise
- nrcdrise
- eareccdfall
- nrcdfall
- rar
- nrfix

Continued fractions counting permutation statistics

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

Continued fractions counting permutation statistics

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\text {eareccpeak }(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction!

Continued fractions counting permutation statistics

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction!
But can obtain J-fraction by specialising $y_{1}=v_{1}$:

Continued fractions counting permutation statistics

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction!
But can obtain J-fraction by specialising $y_{1}=v_{1}$:
Theorem (D. (2023), Conjectured by Sokal-Zeng (2022))

$$
\left.\begin{array}{rl}
& \sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, y_{1}, v_{2}, w, z, \lambda\right) t^{n} \\
= & \frac{1}{1-\lambda z \cdot t-\frac{\lambda x_{1} y_{1} \cdot t^{2}}{(\lambda+1)\left(x_{1}+u_{1}\right) y_{1} \cdot t^{2}}} 11-\left(x_{2}+y_{2}+\lambda w\right) \cdot t-\frac{(\lambda+2)\left(x_{1}+2 u_{1}\right) y_{1} \cdot t^{2}}{1-\ddots}
\end{array}\right)
$$

Continued fractions counting permutation statistics

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction!
But can obtain J-fraction by specialising $y_{1}=v_{1}$:
Theorem (D. (2023), Conjectured by Sokal-Zeng (2022))

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, y_{1}, v_{2}, w, z, \lambda\right) t^{n} \\
= & \frac{1}{1-\lambda z \cdot t-\frac{\lambda x_{1} y_{1} \cdot t^{2}}{1-\left(x_{2}+y_{2}+\lambda w\right) \cdot t-\frac{(\lambda+1)\left(x_{1}+u_{1}\right) y_{1} \cdot t^{2}}{1-\left(\left(x_{2}+v_{2}\right)+\left(y_{2}+v_{2}\right)+\lambda w\right) \cdot t-\frac{(\lambda+2)\left(x_{1}+2 u_{1}\right) y_{1} \cdot t^{2}}{1-\ddots}}}}
\end{aligned}
$$

Can also prove a 4 -variable continued fraction conjectured in 1996 by Randrianarivony-Zeng.

- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal '23] Can interpret Jacobi-Rogers matrix for secant numbers
- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal '23] Can interpret Jacobi-Rogers matrix for secant numbers
- [D., Dyachenko, Pétréolle, Sokal, ongoing] New bijection between labelled 2-Łukasiewicz paths and Laguerre digraphs
- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal '23] Can interpret Jacobi-Rogers matrix for secant numbers
- [D., Dyachenko, Pétréolle, Sokal, ongoing] New bijection between labelled 2-Łukasiewicz paths and Laguerre digraphs Can count statistics on Laguerre digraphs generalising several permutation statistics
- [D., Sokal, '22] Have obtained continued fractions for Genocchi and median Genocchi numbers counting various statistics
- [D., Sokal '23] Can interpret Jacobi-Rogers matrix for secant numbers
- [D., Dyachenko, Pétréolle, Sokal, ongoing] New bijection between labelled 2-Łukasiewicz paths and Laguerre digraphs Can count statistics on Laguerre digraphs generalising several permutation statistics
Branched continued fractions for Laguerre polynomials and total positivity

Thank you

