Conjugacy, languages and groups

Gemma Crowe

Heriot-Watt University

Scottish Combinatorics Meeting University of Strathclyde 22nd-23rd May 2023

Gemma Crowe (HW)

Conjugacy, languages and groups

1/17

Introduction

Pormal language theory Machines Series

3 Groups

Building languages from groups Right-angled Artin groups

4 Results

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Aim of today: find out which 'conjugacy language' properties are preserved under quasi-isometries.

Gemma Crowe (HW)

Conjugacy, languages and groups

3/17

Notation:

- X =finite set.
- $X^* =$ set of all finite words over X.

Notation:

- X =finite set.
- $X^* =$ set of all finite words over X.

Example 1

Let $X = \{0, 1\}$. Then X^* is the set of all binary words.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notation:

- X =finite set.
- $X^* =$ set of all finite words over X.

Example 1

Let $X = \{0, 1\}$. Then X^* is the set of all binary words.

 $L \subseteq X^*$ = language.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notation:

- X =finite set.
- $X^* =$ set of all finite words over X.

Example 1

Let $X = \{0, 1\}$. Then X^* is the set of all binary words.

$L \subseteq X^*$ = language.

Example 2

 $X = \{a, b, c, \dots, z\}.$ L = English Language (Collins Dictionary 2023).

3

Chomsky hierarchy

Chomsky hierarchy

Regular \Leftrightarrow Finite-state automaton. Context-free \Leftrightarrow Pushdown automaton.

5/17

A (10) A (10)

Finite-state automaton

Figure: Finite-state automaton (FSA)

Finite-state automaton

Figure: Finite-state automaton (FSA)

 $X = \{a, b\}, L =$ all words over X which contain an even number of b's.

< 17 ▶

Series

L =language. Define $\phi_L(n) = |\{w \in L \mid \ell(w) = n\}|.$

2

イロン イ理 とく ヨン イヨン

Series

$$L =$$
language. Define $\phi_L(n) = |\{w \in L \mid \ell(w) = n\}|.$

Definition

The strict growth series $f_L(z)$ is defined as the infinite series:

$$f_L(z) := \sum_{i=0}^{\infty} \phi_L(i) z^i$$

크

・ロト ・ 四ト ・ ヨト ・ ヨト

Series

$$L =$$
language. Define $\phi_L(n) = |\{w \in L \mid \ell(w) = n\}|.$

Definition

The strict growth series $f_L(z)$ is defined as the infinite series:

$$f_L(z) := \sum_{i=0}^{\infty} \phi_L(i) z^i$$

- *L* is regular \Rightarrow $f_L(z)$ is rational.
- *L* is unambiguous context-free (UCF) ⇒ *f_L(z)* is algebraic (Chomsky-Schützenberger).
- If $f_L(z)$ is transcendental $\Rightarrow L$ is not UCF (therefore not regular).

3

7/17

 $G = \langle X \rangle$ finitely generated group. $\pi : X^* \to G$. For $g \in G$, define:

э

 $G = \langle X \rangle$ finitely generated group. $\pi : X^* \to G$. For $g \in G$, define:

- |g| := length of shortest representative word for g over X.
- $[g]_c := \text{conjugacy class of } g.$

 $|g|_c := \min\{|h| : h \in [g]_c\}$ = length up to conjugacy.

 $G = \langle X \rangle$ finitely generated group. $\pi : X^* \to G$. For $g \in G$, define:

- |g| := length of shortest representative word for g over X.
- $[g]_c :=$ conjugacy class of g.
- $|g|_c := \min\{|h| : h \in [g]_c\}$ = length up to conjugacy.

Conjugacy geodesic language

$$ConjGeo(G, X) := \{ w \in X^* \mid \ell(w) = |\pi(w)|_c \}$$

'Words which are shortest with respect to their conjugacy class'.

Conjugacy geodesics

Conjugacy geodesic language

$$\mathsf{ConjGeo}(G, X) := \{ w \in X^* \mid \ell(w) = |\pi(w)|_c \}$$

Example: $G = F_2 = \langle a, b \rangle$.

æ

イロン イ理 とく ヨン イヨン

Conjugacy geodesic language

$$\mathsf{ConjGeo}(G,X) := \{ w \in X^* \mid \ell(w) = |\pi(w)|_c \}$$

Example: $G = F_2 = \langle a, b \rangle$.

 $ConjGeo(F_2, X)$ is precisely the set of all cyclically reduced words:

$$\mathsf{ConjGeo}(F_2, X) = \{ w \in X^* \mid w \neq u^{-1}vu \}$$

3

Conjugacy geodesic language

$$\mathsf{ConjGeo}(G,X) := \{ w \in X^* \mid \ell(w) = |\pi(w)|_c \}$$

Example: $G = F_2 = \langle a, b \rangle$.

 $ConjGeo(F_2, X)$ is precisely the set of all cyclically reduced words:

$$\mathsf{ConjGeo}(F_2, X) = \{ w \in X^* \mid w \neq u^{-1}vu \}$$

e.g. $w = a^{-1}bba$. Consider conjugating w by a:

$$awa^{-1} = aa^{-1}bbaa^{-1} = bb.$$

イロト 不得 トイヨト イヨト 二日

For each conjugacy class c, let z_c be the shortlex least word over X representing an element of c.

Example

Let $X = \{a, b\}$. Order generators as $a < a^{-1} < b < b^{-1}$. Then for example:

$$aab^{-1}a < ab^{-1}aa$$

For each conjugacy class c, let z_c be the shortlex least word over X representing an element of c.

Example

Let $X = \{a, b\}$. Order generators as $a < a^{-1} < b < b^{-1}$. Then for example:

$$aab^{-1}a < ab^{-1}aa$$

Shortlex conjugacy language

$$\mathsf{ConjSL}(G, X) := \{ z_c \mid c \in G / \sim \}$$

'Unique representative from each conjugacy class'.

3

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Shortlex conjugacy language

Shortlex conjugacy language

$$\mathsf{ConjSL}(G,X) := \{ z_c \mid c \in G / \sim \}$$

If L = ConjSL(G, X), $f_L(z) = \text{conjugacy growth series}$.

<ロト < 回 > < 回 > < 回 > .

Shortlex conjugacy language

$$\mathsf{ConjSL}(G,X) := \{ z_c \mid c \in G/\sim \}$$

If L = ConjSL(G, X), $f_L(z) = \text{conjugacy growth series}$.

RECAP:

- *L* is regular \Rightarrow *f*_{*L*}(*z*) is rational.
- L is UCF \Rightarrow $f_L(z)$ is algebraic.
- If $f_L(z)$ is transcendental $\Rightarrow L$ is not UCF (therefore not regular).

Shortlex conjugacy language

$$\mathsf{ConjSL}(G,X) := \{ z_c \mid c \in G/\sim \}$$

If L = ConjSL(G, X), $f_L(z) = \text{conjugacy growth series}$.

RECAP:

- *L* is regular \Rightarrow *f*_{*L*}(*z*) is rational.
- L is UCF $\Rightarrow f_L(z)$ is algebraic.
- If $f_L(z)$ is transcendental $\Rightarrow L$ is not UCF (therefore not regular).

Ok, time for some groups!

Definition

Let Γ be a finite simple graph. The **right-angled Artin group** on Γ , denoted A_{Γ} , is the group defined by the following presentation:

 $A_{\Gamma} = \langle V(\Gamma) \mid [u, v] = 1$ if and only if $\{u, v\} \in E(\Gamma) \rangle$

Definition

Let Γ be a finite simple graph. The **right-angled Artin group** on Γ , denoted A_{Γ} , is the group defined by the following presentation:

 $A_{\Gamma} = \langle V(\Gamma) \mid [u, v] = 1$ if and only if $\{u, v\} \in E(\Gamma) \rangle$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gemma Crowe (HW)

Conjugacy, languages and groups

Э.

<ロ> <問> <問> < 回> < 回> 、

Group	ConjGeo	ConjSL
Word hyperbolic	Regular*[1]	Not UCF [2]
XL - type Artin	Regular [1]	Not regular [1]
Virtually abelian	PT [1]	-
Virtually cyclic	Regular*	Regular*[1]
RAAGs	Regular [3]	Not CF [C, 22]
(Some) virtual RAAGs		Not CF [C, 22]

*: true for all generating sets.

PT: Piecewise testable.

- [1]: Ciobanu, Hermiller, Holt, Rees (2016).
- [2]: Antolin, Ciobanu (2017).
- [3]: Ciobanu, Hermiller (2013).

イロト イヨト イヨト イヨ

Theorem (C, 2022)

Let A_{ϕ} be a virtual RAAG of the form $A_{\phi} = A_{\Gamma} \rtimes \mathbb{Z}/m\mathbb{Z}$. Then there exists examples of RAAGs A_{Γ} such that:

- 1 ConjGeo (A_{ϕ}, X) is regular, or
- **2** ConjGeo (A_{ϕ}, X) *is not context-free.*

・ロト ・四ト ・ヨト・

Theorem (C, 2022)

Let A_{ϕ} be a virtual RAAG of the form $A_{\phi} = A_{\Gamma} \rtimes \mathbb{Z}/m\mathbb{Z}$. Then there exists examples of RAAGs A_{Γ} such that:

- 1 ConjGeo (A_{ϕ}, X) is regular, or
- **2** ConjGeo (A_{ϕ}, X) *is not context-free.*

Key fact: quasi-isometries don't guarantee same types of languages!

Yago Antolín, Laura Ciobanu (2017) Formal Conjugacy Growth in Acylindrically Hyperbolic groups International Mathematics Research Notices (1):121-157

Laura Ciobanu, Susan Hermiller (2013) Conjugacy growth series and languages in groups *Transactions of the American Mathematical Society* 366(5):2803-2825

Laura Ciobanu, Susan Hermiller, Derek Holt, Sarah Rees (2016) Conjugacy languages in groups *Israel Journal of Mathematics* 211(1):311-347

Gemma Crowe (2022) Conjugacy languages in virtual graph products https://arxiv.org/abs/2212.07111

Thank you for listening!

Any questions?