Conjugacy, languages and groups

Gemma Crowe

Heriot-Watt University

Scottish Combinatorics Meeting
 University of Strathclyde 22nd-23rd May 2023

HERIOT

Plan for today

(1) Introduction
(2) Formal language theory

Machines
Series
(3) Groups

Building languages from groups Right-angled Artin groups
(4) Results

Introduction

Combinatorics

Languages

Geometry
Algebra

Introduction

Aim of today: find out which 'conjugacy language' properties are preserved under quasi-isometries.

Formal languages

Notation:

- $X=$ finite set.
- $X^{*}=$ set of all finite words over X.

Formal languages

Notation:

- $X=$ finite set.
- $X^{*}=$ set of all finite words over X.

Example 1

Let $X=\{0,1\}$. Then X^{*} is the set of all binary words.

Formal languages

Notation:

- $X=$ finite set.
- $X^{*}=$ set of all finite words over X.

Example 1

Let $X=\{0,1\}$. Then X^{*} is the set of all binary words.
$L \subseteq X^{*}=$ language.

Formal languages

Notation:

- $X=$ finite set.
- $X^{*}=$ set of all finite words over X.

Example 1

Let $X=\{0,1\}$. Then X^{*} is the set of all binary words.
$L \subseteq X^{*}=$ language.

Example 2

$X=\{a, b, c, \ldots, z\}$.
$L=$ English Language (Collins Dictionary 2023).

Chomsky hierarchy

Figure: Chomsky hierarchy

Chomsky hierarchy

Figure: Chomsky hierarchy

> Regular \Leftrightarrow Finite-state automaton.
> Context-free \Leftrightarrow Pushdown automaton.

Finite-state automaton

Figure: Finite-state automaton (FSA)

Finite-state automaton

Figure: Finite-state automaton (FSA)
$X=\{a, b\}, L=$ all words over X which contain an even number of b 's.

Series

$L=$ language. Define $\phi_{L}(n)=|\{w \in L \mid \ell(w)=n\}|$.

Series

$L=$ language. Define $\phi_{L}(n)=|\{w \in L \mid \ell(w)=n\}|$.

Definition

The strict growth series $f_{L}(z)$ is defined as the infinite series:

$$
f_{L}(z):=\sum_{i=0}^{\infty} \phi_{L}(i) z^{i}
$$

Series

$L=$ language. Define $\phi_{L}(n)=|\{w \in L \mid \ell(w)=n\}|$.

Definition

The strict growth series $f_{L}(z)$ is defined as the infinite series:

$$
f_{L}(z):=\sum_{i=0}^{\infty} \phi_{L}(i) z^{i}
$$

- L is regular $\Rightarrow f_{L}(z)$ is rational.
- L is unambiguous context-free (UCF) $\Rightarrow f_{L}(z)$ is algebraic (Chomsky-Schützenberger).
- If $f_{L}(z)$ is transcendental $\Rightarrow L$ is not UCF (therefore not regular).

Languages from groups

$G=\langle X\rangle$ finitely generated group. $\pi: X^{*} \rightarrow G$. For $g \in G$, define:

Languages from groups

$G=\langle X\rangle$ finitely generated group. $\pi: X^{*} \rightarrow G$. For $g \in G$, define:
$|g|:=$ length of shortest representative word for g over X.
$[g]_{c}:=$ conjugacy class of g.
$|g|_{c}:=\min \left\{|h|: h \in[g]_{c}\right\}=$ length up to conjugacy.

Languages from groups

$G=\langle X\rangle$ finitely generated group. $\pi: X^{*} \rightarrow G$. For $g \in G$, define:
$|g|:=$ length of shortest representative word for g over X.
$[g]_{c}:=$ conjugacy class of g.
$|g|_{c}:=\min \left\{|h|: h \in[g]_{c}\right\}=$ length up to conjugacy.

Conjugacy geodesic language

$$
\operatorname{ConjGeo}(G, X):=\left\{w \in X^{*}\left|\ell(w)=|\pi(w)|_{c}\right\}\right.
$$

'Words which are shortest with respect to their conjugacy class'.

Conjugacy geodesics

Conjugacy geodesic language

$$
\operatorname{ConjGeo}(G, X):=\left\{w \in X^{*}\left|\ell(w)=|\pi(w)|_{c}\right\}\right.
$$

Example: $G=F_{2}=\langle a, b\rangle$.

Conjugacy geodesics

Conjugacy geodesic language

$$
\operatorname{ConjGeo}(G, X):=\left\{w \in X^{*}\left|\ell(w)=|\pi(w)|_{c}\right\}\right.
$$

Example: $G=F_{2}=\langle a, b\rangle$.
ConjGeo $\left(F_{2}, X\right)$ is precisely the set of all cyclically reduced words:

$$
\operatorname{ConjGeo}\left(F_{2}, X\right)=\left\{w \in X^{*} \mid w \neq u^{-1} v u\right\}
$$

Conjugacy geodesics

Conjugacy geodesic language

$$
\operatorname{ConjGeo}(G, X):=\left\{w \in X^{*}\left|\ell(w)=|\pi(w)|_{c}\right\}\right.
$$

Example: $G=F_{2}=\langle a, b\rangle$.
ConjGeo $\left(F_{2}, X\right)$ is precisely the set of all cyclically reduced words:

$$
\operatorname{ConjGeo}\left(F_{2}, X\right)=\left\{w \in X^{*} \mid w \neq u^{-1} v u\right\}
$$

e.g. $w=a^{-1} b b a$. Consider conjugating w by a :

$$
a w a^{-1}=a a^{-1} b b a a^{-1}=b b .
$$

Languages from groups

For each conjugacy class c, let z_{c} be the shortlex least word over X representing an element of c.

Example

Let $X=\{a, b\}$. Order generators as $a<a^{-1}<b<b^{-1}$. Then for example:

$$
a a b^{-1} a<a b^{-1} a a
$$

Languages from groups

For each conjugacy class c, let z_{c} be the shortlex least word over X representing an element of c.

Example

Let $X=\{a, b\}$. Order generators as $a<a^{-1}<b<b^{-1}$. Then for example:

$$
a a b^{-1} a<a b^{-1} a a
$$

Shortlex conjugacy language

$$
\operatorname{ConjSL}(G, X):=\left\{z_{c} \mid c \in G / \sim\right\}
$$

'Unique representative from each conjugacy class'.

Shortlex conjugacy language

Shortlex conjugacy language

$$
\operatorname{ConjSL}(G, X):=\left\{z_{c} \mid c \in G / \sim\right\}
$$

If $L=\operatorname{ConjSL}(G, X), f_{L}(z)=$ conjugacy growth series.

Shortlex conjugacy language

Shortlex conjugacy language

$$
\operatorname{ConjSL}(G, X):=\left\{z_{c} \mid c \in G / \sim\right\}
$$

If $L=\operatorname{ConjSL}(G, X), f_{L}(z)=$ conjugacy growth series.

RECAP:

- L is regular $\Rightarrow f_{L}(z)$ is rational.
- L is UCF $\Rightarrow f_{L}(z)$ is algebraic.
- If $f_{L}(z)$ is transcendental $\Rightarrow L$ is not UCF (therefore not regular).

Shortlex conjugacy language

Shortlex conjugacy language

$$
\operatorname{ConjSL}(G, X):=\left\{z_{c} \mid c \in G / \sim\right\}
$$

If $L=\operatorname{ConjSL}(G, X), f_{L}(z)=$ conjugacy growth series.

RECAP:

- L is regular $\Rightarrow f_{L}(z)$ is rational.
- L is UCF $\Rightarrow f_{L}(z)$ is algebraic.
- If $f_{L}(z)$ is transcendental $\Rightarrow L$ is not UCF (therefore not regular).

Ok, time for some groups!

My favourite groups!

Definition

Let Γ be a finite simple graph. The right-angled Artin group on Γ, denoted A_{Γ}, is the group defined by the following presentation:

$$
\left.A_{\Gamma}=\langle V(\Gamma)|[u, v]=1 \text { if and only if }\{u, v\} \in E(\Gamma)\right\rangle
$$

My favourite groups!

Definition

Let Γ be a finite simple graph. The right-angled Artin group on Γ, denoted A_{Γ}, is the group defined by the following presentation:

$$
\left.A_{\Gamma}=\langle V(\Gamma)|[u, v]=1 \text { if and only if }\{u, v\} \in E(\Gamma)\right\rangle
$$

\mathbb{Z}^{4}

$F_{2} \times F_{2}$
-

-

$$
F_{4}
$$

Summary

Results

Group	ConjGeo	ConjSL
Word hyperbolic	Regular*[1]	Not UCF [2]
XL - type Artin	Regular [1]	Not regular [1]
Virtually abelian	PT [1]	-
Virtually cyclic	Regular*	Regular*[1]
RAAGs	Regular [3]	Not CF [C, 22]
(Some) virtual RAAGs	\ldots	Not CF [C, 22]

*: true for all generating sets.
PT: Piecewise testable.
[1]: Ciobanu, Hermiller, Holt, Rees (2016).
[2]: Antolin, Ciobanu (2017).
[3]: Ciobanu, Hermiller (2013).

Results

Theorem (C, 2022)

Let A_{ϕ} be a virtual RAAG of the form $A_{\phi}=A_{\Gamma} \rtimes \mathbb{Z} / m \mathbb{Z}$. Then there exists examples of RAAGs A_{Γ} such that:
(1) ConjGeo $\left(A_{\phi}, X\right)$ is regular, or
(2) ConjGeo $\left(A_{\phi}, X\right)$ is not context-free.

Results

Theorem (C, 2022)

Let A_{ϕ} be a virtual RAAG of the form $A_{\phi}=A_{\Gamma} \rtimes \mathbb{Z} / m \mathbb{Z}$. Then there exists examples of RAAGs A_{Γ} such that:
(1) ConjGeo $\left(A_{\phi}, X\right)$ is regular, or
(2) ConjGeo $\left(A_{\phi}, X\right)$ is not context-free.

Key fact: quasi-isometries don't guarantee same types of languages!

References

Yago Antolín, Laura Ciobanu (2017)
Formal Conjugacy Growth in Acylindrically Hyperbolic groups
International Mathematics Research Notices (1):121-157
埥 Laura Ciobanu, Susan Hermiller (2013)
Conjugacy growth series and languages in groups
Transactions of the American Mathematical Society 366(5):2803-2825
R
Laura Ciobanu, Susan Hermiller, Derek Holt, Sarah Rees (2016)
Conjugacy languages in groups
Israel Journal of Mathematics 211(1):311-347
围 Gemma Crowe (2022)
Conjugacy languages in virtual graph products
https://arxiv.org/abs/2212.07111

Thank you for listening！

Any questions？

