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No permutation in the following list embeds in any other

· · ·



Infinite antichain: An infinite set of combinatorial structures such that
no one embeds in another.

· · ·

· · ·
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§1 Permutation containment



4 1 2 6 3 8 5 7⩽̸⩽⩽1 3 5 2 44 2 1 5 31 3 5 2 4

• Think of the n entries of π = π(1) · · ·π(n) as vertices

• Containment ordering: ‘Delete entries, and rescale’
• Formally: σ ⩽ π if π has a subsequence with the same relative

ordering as σ.
• If σ ̸⩽ π, then π avoids σ.

Induced substructure preserved: σ ⩽ π implies Gσ ⩽ind Gπ
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Inversion graph Gπ of π = π(1) · · ·π(n):
• Vertices = {1, 2, . . . , n}
• Edges: a ∼ b if a < b and π(b) < π(a) (edges = inversions)

Induced substructure preserved: σ ⩽ π implies Gσ ⩽ind Gπ
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Permutations to graphs is many-to-one

σ ⩽ π implies Gσ ⩽ind Gπ but:

G2413 ∼= G3142 ∼= even though 2413 ̸= 3142.



Hereditary classes

Set C of graphs/permutations is hereditary if
A ∈ C and B is an induced substructure of A, then B ∈ C. (‘class’)

Every hereditary class has a unique set of minimal forbidden elements:
the smallest things that are ‘not in the class’. (‘basis’)
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Some graph classes
Class C = Free(B) Basis B

Empty graphs (no edges) { }

Forests { , , , . . . }

Bipartite graphs { , , , . . . }
Inversion graphs Free(Cn+4 , T2 , X2 , X3 , X30 , X31 , X32 , X33 , X34 , X36 , XF2n+3

1 ,

XFn+1
2 , XFn

3 , XFn
4 , XF2n+3

5 , XF2n+2
6 ,+complements)

(Gallai 1967)



Hereditary classes

Set C of graphs/permutations is hereditary if
A ∈ C and B is an induced substructure of A, then B ∈ C. (‘class’)

Every hereditary class has a unique set of minimal forbidden elements:
the smallest things that are ‘not in the class’. (‘basis’)

Some permutation classes
Class C = Av(B) Basis B

{1, 12, 123, . . . } {21}
Union of 2 increases {321}
‘Stack sortable’ {231}
‘2-stack-sortable’ Infinite (Murphy 2003)



§2 Counting classes



Av(21) = {1, 12, 123, . . . } has
1 permutation of each length.

Av(231) has 1, 2, 5, 14, 42, . . .
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Typical questions in Permutation Patterns

For a permutation class C:
• What is the generating function? (e.g. rational, algebraic, D-finite)

fC(z) =
∑
π∈C

z|π| =
∞∑

n=1

|Cn|zn, where Cn = {π ∈ C : |π| = n}.

• What is the growth rate?

gr(C) = lim sup
n→∞ n

√
|Cn|, which exists by Marcus & Tardos (2004).

• What is the basis? (Is C finitely based?)

• What do the permutations ‘look like’?
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‘Tame’ structure tends to give a ‘tame’ generating function.



Theorem (Albert, B., 2014)

The permutation class that determine Schubert varieties defined by inclusions
(Av(4231, 31524, 42513, 351624)) has generating function

1 − 3z − 2z2 − (1 − z − 2z2)
√

1 − 4z
1 − 3z − (1 − z + 2z2)

√
1 − 4z

.



‘Tame’ structure tends to give a ‘tame’ generating function.

but not vice versa. . .



Theorem (Albert, B., Vatter, 2013)

Every proper permutation class C is contained in a permutation class with a
rational generating function.

‘Proof’.
Make an enormous infinite antichain

A
such that Av(A) ∪ A has a rational generating function.
Union this with C, and remove enough antichain elements of each
length to preserve rationality.
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‘Tame’ structure tends to give a ‘tame’ generating function.

It is tempting to generalise. . .



Conjecture (Noonan, Zeilberger, 1996)

Every finitely based class has a D-finite generating function.

Conjecture (Zeilberger, 2005)

Noonan-Zeilberger is false.

Theorem (Garrabrant, Pak, 2015)

Zeilberger is right: Noonan-Zeilberger is false.

So ‘finitely based’ isn’t universally tame. Nevertheless. . .

Conjecture

Every finitely based class with growth rate < 4 has a rational generating
function.
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‘Tame’ structure tends to give a ‘tame’ generating function.

Is there something general we can say here?



§3 Well-quasi-ordering



Av(231) Av(321)
Growth rate 4 4

Generating function 1 −
√

1 − 4z
2z

1 −
√

1 − 4z
2z

Basis 231 321

‘Look like’
Av(231)

Av(231)

· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·



What about subclasses of Av(231), Av(321)?

C ⊊ Av(231) D ⊊ Av(321)

Growth rate
Countably many

possibilities
Includes [2.36, 2.48]

(Bevan, 2018)

Generating function
Rational (Albert,
Atkinson, 2005)

Could be anything

Basis Finite Finite or infinite

Infinite antichains? No Yes: . . .
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A permutation class is well-quasi-ordered (WQO) if it contains no
infinite antichains.

A strong indicator of ‘tameness’, for example, even though Av(321) is
not WQO:

Theorem (Albert, B., Ruškuc, Vatter, 2019)

Every WQO or finitely based subclass of Av(321) has a rational generating
function.

Conjecture (Vatter, 2015)

Every WQO permutation class has an algebraic generating function.

This also turned out to be a generalisation too far. . .
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is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



0 1 1 0 1 0 0 0 1 1 0 · · ·

Prouhet-Thue-Morse:

0110 1001 1001 0110 1001 0110 0110 1001 1001 0110 0110 1001. . .

is a uniformly recurrent sequence

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.



Sequence construction (generalising Prouhet-Thue-Morse) from
Maurice Pouzet’s 1978 thesis =⇒ uncountably many WQO classes
with different generating functions.

Too many generating functions for all of them to be algebraic.

Theorem (B., Vatter, 2023+)

There are uncountably many distinct enumerations of WQO permutation
classes.

Hence, not all WQO classes have algebraic (or D-finite) generating functions.

Infinite binary sequence s −→ infinite permutation πs : N → Z

class Cs = {(finite) permutations π ⩽ πs}

If s is uniformly recurrent, then Cs is wqo.
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Labelled WQO

A class is labelled well-quasi-ordered (LWQO) if we cannot construct a
labelled infinite antichain, no matter the set of labels.†

† Includes infinite sets of labels, but they must be WQO.

Theorem (After Pouzet, 1972)

LWQO (permutation) classes must be finitely based.

Corollary

There are only countably many LWQO permutation classes.



‘Tame’ structure tends to give a ‘tame’ generating function.

Does LWQO guarantee tame enumeration?



§5 Permutations & inversion graphs



Does WQO translate?

Recall: σ ⩽ π⇒ Gσ ⩽ind Gπ. Thus C (L)WQO ⇒ GC (L)WQO.

Question

If C is a permutation class such that GC is WQO, must C be WQO?
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Note that G231 ∼= G312 ∼=
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Does WQO translate?

Recall: σ ⩽ π⇒ Gσ ⩽ind Gπ. Thus C (L)WQO ⇒ GC (L)WQO.

Question

If C is a permutation class such that GC is WQO, must C be WQO?

Theorem (B., Vatter, 2022)

Let C be a permutation class. C is LWQO if and only if GC is LWQO.



Thanks!


