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Algebraic phrasing

For i , j ∈ Zn, let ||i , j ||n be the distance between i and j when the
elements of Zn are written in a circle.

||i , j ||n = min{(i − j) mod n, (j − i) mod n}.

Definition (An overlapping rectangle)

A permutation π : Zn → Zn has an (s, k)-clash if there exist distinct
i , j ∈ Zn with ||i , j ||n < s and ||π(i), π(j)||n < k.

Definition (No overlapping rectangles)

A permutation π : Zn → Zn is (s, k)-clash-free if it has no (s, k)-clashes.
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Related work

Generalisations of k = 2 case: cyclic matching sequencability for
graphs: Alspach, Bull. ICA 2008, Brualdi–Kiernan–Meyer, Australas.
J. Comb. 2012; Kreher–Pastine–Tollefson, Australas. J. Comb. 2015.

Non-cyclic case (cylinder or square, not torus): Mammoliti-Simpson,
Australas. J. Comb. 2020.

Packing diamonds rather than rectangles (large distance in the
Manhattan metric): Aspvell–Liang Stanford Tech. Report 1980;
Bevan–Homberger–Tenner JCT-A 2018; SRB–Homberger–Winkler
JCT-A 2019.
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The main question

Definition (How wide can rectangles be?)

Let n and k be fixed. Define σ(n, k) to be the largest s such that an
(s, k)-clash-free permutation π of Zn exists.

Theorem (Mammoliti–Simpson, Australian J. Comb. 2020)

σ(n, k) ≤ b(n − 1)/kc

Proof.

nsk ≤ n2.

We can’t have sk = n:

So sk ≤ n − 1.
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Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

b(n − 1)/kc − 1 ≤ σ(n, k) ≤ b(n − 1)/kc

Proof. (n, k , s) = (76, 6, 11).

Set ρ(0) = 0, ρ(1) = 12, and so on. ρ is (k , s)-clash-free. Set π = ρ−1.
Then π is (s, k)-clash-free.
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Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with k < n. Write s = b(n − 1)/kc,
so n = sk + r where 1 ≤ r ≤ k. Define dk = gcd(n, k) and ds = gcd(n, s).

If r ≥ s or k = r , then σ(n, k) = b(n − 1)/kc.
If r < s and r < k and dsdk divides n, then σ(n, k) = b(n − 1)/kc.
If r < s and r < k and dsdk does not divide n, then
σ(n, k) = b(n − 1)/kc − 1.
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A sketch proof
Assume n = sk + r where 1 ≤ r < min{k, s}.

In every row, and every column, exactly r positions are uncovered.
Every rectangle touches 4 others, one on each side:

Rectangles form east-west and north-south lines: warp and weft threads.
Threads cannot change direction:
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A sketch proof 2

Threads must be periodic, giving the condition that dsdk divides n.

The structure must look something like this:

Can classify permutations by jumpers: two sequences determining sizes of
gaps.
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Jumpers

Definition

An (s, k , n)-jumper is a pair
(
(ai ), (bi )

)
of sequences of integers with the

following properties:

1 (ai ) has period dividing ds , and (bi ) has period dividing dk .

2 We have 1 ≤ ai < s and 1 ≤ bi < k for i ≥ 0.

3 The dk partial sums
∑`−1

i=0 bi where 0 ≤ ` < ds are distinct modulo

dk . Moreover, dsdk divides σb where σb =
∑dk−1

i=0 bi .

4 The ds partial sums
∑m−1

i=0 ai where 0 ≤ m < ds are distinct modulo

ds . Moreover, dsdk divides σa where σa =
∑ds−1

i=0 ai .

5 Defining σa and σb as above, σaσb = dsdk r .
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The classification

Theorem

Let n and k be fixed integers with k < n. Set s = b(n − 1)/kc, and define
r by n = sk + r for 1 ≤ r ≤ k. Define ds = gcd(n, s) and dk = gcd(n, k).
Assume that r < k and r < s. Futhermore, suppose that dsdk divides n.

There is a bijection between the set of clockwise (s, k)-clash-free
permutations with π(0) = 0 and the set J(s, k , n) of (s, k , n)-jumpers.
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Thanks!
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