Permutations that separate close elements

Simon R. Blackburn
Royal Holloway University of London
Joint work with Tuvi Etzion (Technion)

22-23 May 2023

Torus packings

Algebraic phrasing

For $i, j \in \mathbb{Z}_{n}$, let $\|i, j\|_{n}$ be the distance between i and j when the elements of \mathbb{Z}_{n} are written in a circle.

Algebraic phrasing

For $i, j \in \mathbb{Z}_{n}$, let $\|i, j\|_{n}$ be the distance between i and j when the elements of \mathbb{Z}_{n} are written in a circle.

$$
\|i, j\|_{n}=\min \{(i-j) \bmod n,(j-i) \bmod n\}
$$

Algebraic phrasing

For $i, j \in \mathbb{Z}_{n}$, let $\|i, j\|_{n}$ be the distance between i and j when the elements of \mathbb{Z}_{n} are written in a circle.

$$
\|i, j\|_{n}=\min \{(i-j) \bmod n,(j-i) \bmod n\}
$$

Definition (An overlapping rectangle)

A permutation $\pi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ has an (s, k)-clash if there exist distinct $i, j \in \mathbb{Z}_{n}$ with $\|i, j\|_{n}<s$ and $\|\pi(i), \pi(j)\|_{n}<k$.

Algebraic phrasing

For $i, j \in \mathbb{Z}_{n}$, let $\|i, j\|_{n}$ be the distance between i and j when the elements of \mathbb{Z}_{n} are written in a circle.

$$
\|i, j\|_{n}=\min \{(i-j) \bmod n,(j-i) \bmod n\}
$$

Definition (An overlapping rectangle)

A permutation $\pi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ has an (s, k)-clash if there exist distinct $i, j \in \mathbb{Z}_{n}$ with $\|i, j\|_{n}<s$ and $\|\pi(i), \pi(j)\|_{n}<k$.

Definition (No overlapping rectangles)

A permutation $\pi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is (s, k)-clash-free if it has no (s, k)-clashes.

Related work

- Generalisations of $k=2$ case: cyclic matching sequencability for graphs: Alspach, Bull. ICA 2008, Brualdi-Kiernan-Meyer, Australas. J. Comb. 2012; Kreher-Pastine-Tollefson, Australas. J. Comb. 2015.

Related work

- Generalisations of $k=2$ case: cyclic matching sequencability for graphs: Alspach, Bull. ICA 2008, Brualdi-Kiernan-Meyer, Australas. J. Comb. 2012; Kreher-Pastine-Tollefson, Australas. J. Comb. 2015.
- Non-cyclic case (cylinder or square, not torus): Mammoliti-Simpson, Australas. J. Comb. 2020.

Related work

- Generalisations of $k=2$ case: cyclic matching sequencability for graphs: Alspach, Bull. ICA 2008, Brualdi-Kiernan-Meyer, Australas. J. Comb. 2012; Kreher-Pastine-Tollefson, Australas. J. Comb. 2015.
- Non-cyclic case (cylinder or square, not torus): Mammoliti-Simpson, Australas. J. Comb. 2020.
- Packing diamonds rather than rectangles (large distance in the Manhattan metric): Aspvell-Liang Stanford Tech. Report 1980; Bevan-Homberger-Tenner JCT-A 2018; SRB-Homberger-Winkler JCT-A 2019.

The main question

Definition (How wide can rectangles be?)
Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_{n} exists.

The main question

Definition (How wide can rectangles be?)
Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_{n} exists.

Theorem (Mammoliti-Simpson, Australian J. Comb. 2020)

$$
\sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

The main question

Definition (How wide can rectangles be?)
Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_{n} exists.

Theorem (Mammoliti-Simpson, Australian J. Comb. 2020)

$$
\sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

Proof.

$$
n s k \leq n^{2} .
$$

The main question

Definition (How wide can rectangles be?)
Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_{n} exists.

Theorem (Mammoliti-Simpson, Australian J. Comb. 2020)

$$
\sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

Proof.

$$
n s k \leq n^{2}
$$

We can't have $s k=n$:

The main question

Definition (How wide can rectangles be?)
Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_{n} exists.

Theorem (Mammoliti-Simpson, Australian J. Comb. 2020)

$$
\sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

Proof.

$$
n s k \leq n^{2}
$$

We can't have sk $=n$:

So $s k \leq n-1$.

Mammoliti-Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$
\lfloor(n-1) / k\rfloor-1 \leq \sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

Mammoliti-Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$
\lfloor(n-1) / k\rfloor-1 \leq \sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

$$
\text { Proof. }(n, k, s)=(76,6,11) .
$$

Mammoliti-Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$
\lfloor(n-1) / k\rfloor-1 \leq \sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

Proof. $(n, k, s)=(76,6,11)$.

$$
\left(\begin{array}{ccccccccccccccccccc}
0 & 12 & 24 & 36 & 48 & 60 & 72 & 8 & 20 & 32 & 44 & 56 & 68 & 4 & 16 & 28 & 40 & 52 & 64 \\
1 & 13 & 25 & 37 & 49 & 61 & 73 & 9 & 21 & 33 & 45 & 57 & 69 & 5 & 17 & 29 & 41 & 53 & 65 \\
2 & 14 & 26 & 38 & 50 & 62 & 74 & 10 & 22 & 34 & 46 & 58 & 70 & 6 & 18 & 30 & 42 & 54 & 66 \\
3 & 15 & 27 & 39 & 51 & 63 & 75 & 11 & 23 & 35 & 47 & 59 & 71 & 7 & 19 & 31 & 43 & 55 & 67
\end{array}\right)
$$

Mammoliti-Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$
\lfloor(n-1) / k\rfloor-1 \leq \sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

Proof. $(n, k, s)=(76,6,11)$.

$$
\left(\begin{array}{ccccccccccccccccccc}
0 & 12 & 24 & 36 & 48 & 60 & 72 & 8 & 20 & 32 & 44 & 56 & 68 & 4 & 16 & 28 & 40 & 52 & 64 \\
1 & 13 & 25 & 37 & 49 & 61 & 73 & 9 & 21 & 33 & 45 & 57 & 69 & 5 & 17 & 29 & 41 & 53 & 65 \\
2 & 14 & 26 & 38 & 50 & 62 & 74 & 10 & 22 & 34 & 46 & 58 & 70 & 6 & 18 & 30 & 42 & 54 & 66 \\
3 & 15 & 27 & 39 & 51 & 63 & 75 & 11 & 23 & 35 & 47 & 59 & 71 & 7 & 19 & 31 & 43 & 55 & 67
\end{array}\right)
$$

Set $\rho(0)=0, \rho(1)=12$, and so on. ρ is (k, s)-clash-free.

Mammoliti-Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$
\lfloor(n-1) / k\rfloor-1 \leq \sigma(n, k) \leq\lfloor(n-1) / k\rfloor
$$

Proof. $(n, k, s)=(76,6,11)$.

$$
\left(\begin{array}{ccccccccccccccccccc}
0 & 12 & 24 & 36 & 48 & 60 & 72 & 8 & 20 & 32 & 44 & 56 & 68 & 4 & 16 & 28 & 40 & 52 & 64 \\
1 & 13 & 25 & 37 & 49 & 61 & 73 & 9 & 21 & 33 & 45 & 57 & 69 & 5 & 17 & 29 & 41 & 53 & 65 \\
2 & 14 & 26 & 38 & 50 & 62 & 74 & 10 & 22 & 34 & 46 & 58 & 70 & 6 & 18 & 30 & 42 & 54 & 66 \\
3 & 15 & 27 & 39 & 51 & 63 & 75 & 11 & 23 & 35 & 47 & 59 & 71 & 7 & 19 & 31 & 43 & 55 & 67
\end{array}\right)
$$

Set $\rho(0)=0, \rho(1)=12$, and so on. ρ is (k, s)-clash-free. Set $\pi=\rho^{-1}$. Then π is (s, k)-clash-free.

Which case occurs?

Which case occurs?

Theorem (SRB-Etzion, 2023+)

Let n and k be fixed positive integers, with $k<n$. Write $s=\lfloor(n-1) / k\rfloor$, so $n=s k+r$ where $1 \leq r \leq k$.

Which case occurs?

Theorem (SRB-Etzion, 2023+)

Let n and k be fixed positive integers, with $k<n$. Write $s=\lfloor(n-1) / k\rfloor$, so $n=s k+r$ where $1 \leq r \leq k$. Define $d_{k}=\operatorname{gcd}(n, k)$ and $d_{s}=\operatorname{gcd}(n, s)$.

Which case occurs?

Theorem (SRB-Etzion, 2023+)

Let n and k be fixed positive integers, with $k<n$. Write $s=\lfloor(n-1) / k\rfloor$, so $n=s k+r$ where $1 \leq r \leq k$. Define $d_{k}=\operatorname{gcd}(n, k)$ and $d_{s}=\operatorname{gcd}(n, s)$.

- If $r \geq s$ or $k=r$, then $\sigma(n, k)=\lfloor(n-1) / k\rfloor$.

Which case occurs?

Theorem (SRB-Etzion, 2023+)

Let n and k be fixed positive integers, with $k<n$. Write $s=\lfloor(n-1) / k\rfloor$, so $n=s k+r$ where $1 \leq r \leq k$. Define $d_{k}=\operatorname{gcd}(n, k)$ and $d_{s}=\operatorname{gcd}(n, s)$.

- If $r \geq s$ or $k=r$, then $\sigma(n, k)=\lfloor(n-1) / k\rfloor$.
- If $r<s$ and $r<k$ and $d_{s} d_{k}$ divides n, then $\sigma(n, k)=\lfloor(n-1) / k\rfloor$.

Which case occurs?

Theorem (SRB-Etzion, 2023+)

Let n and k be fixed positive integers, with $k<n$. Write $s=\lfloor(n-1) / k\rfloor$, so $n=s k+r$ where $1 \leq r \leq k$. Define $d_{k}=\operatorname{gcd}(n, k)$ and $d_{s}=\operatorname{gcd}(n, s)$.

- If $r \geq s$ or $k=r$, then $\sigma(n, k)=\lfloor(n-1) / k\rfloor$.
- If $r<s$ and $r<k$ and $d_{s} d_{k}$ divides n, then $\sigma(n, k)=\lfloor(n-1) / k\rfloor$.
- If $r<s$ and $r<k$ and $d_{s} d_{k}$ does not divide n, then $\sigma(n, k)=\lfloor(n-1) / k\rfloor-1$.

A sketch proof

Assume $n=s k+r$ where $1 \leq r<\min \{k, s\}$.

A sketch proof

Assume $n=s k+r$ where $1 \leq r<\min \{k, s\}$.
In every row, and every column, exactly r positions are uncovered.

A sketch proof

Assume $n=s k+r$ where $1 \leq r<\min \{k, s\}$.
In every row, and every column, exactly r positions are uncovered.
Every rectangle touches 4 others, one on each side:

A sketch proof

Assume $n=s k+r$ where $1 \leq r<\min \{k, s\}$.
In every row, and every column, exactly r positions are uncovered.
Every rectangle touches 4 others, one on each side:

Rectangles form east-west and north-south lines: warp and weft threads.

A sketch proof

Assume $n=s k+r$ where $1 \leq r<\min \{k, s\}$.
In every row, and every column, exactly r positions are uncovered.
Every rectangle touches 4 others, one on each side:

Rectangles form east-west and north-south lines: warp and weft threads. Threads cannot change direction:

A sketch proof 2

Threads must be periodic, giving the condition that $d_{s} d_{k}$ divides n.

A sketch proof 2

Threads must be periodic, giving the condition that $d_{s} d_{k}$ divides n. The structure must look something like this:

A sketch proof 2

Threads must be periodic, giving the condition that $d_{s} d_{k}$ divides n. The structure must look something like this:

Can classify permutations by jumpers: two sequences determining sizes of gaps.

Jumpers

Definition

An (s, k, n)-jumper is a pair $\left(\left(a_{i}\right),\left(b_{i}\right)\right)$ of sequences of integers with the following properties:
(1) (a_{i}) has period dividing d_{s}, and $\left(b_{i}\right)$ has period dividing d_{k}.
(2) We have $1 \leq a_{i}<s$ and $1 \leq b_{i}<k$ for $i \geq 0$.
(3) The d_{k} partial sums $\sum_{i=0}^{\ell-1} b_{i}$ where $0 \leq \ell<d_{s}$ are distinct modulo d_{k}. Moreover, $d_{s} d_{k}$ divides σ_{b} where $\sigma_{b}=\sum_{i=0}^{d_{k}-1} b_{i}$.
(1) The d_{s} partial sums $\sum_{i=0}^{m-1} a_{i}$ where $0 \leq m<d_{s}$ are distinct modulo d_{s}. Moreover, $d_{s} d_{k}$ divides σ_{a} where $\sigma_{a}=\sum_{i=0}^{d_{s}-1} a_{i}$.
(0) Defining σ_{a} and σ_{b} as above, $\sigma_{a} \sigma_{b}=d_{s} d_{k} r$.

The classification

Theorem

Let n and k be fixed integers with $k<n$. Set $s=\lfloor(n-1) / k\rfloor$, and define r by $n=s k+r$ for $1 \leq r \leq k$. Define $d_{s}=\operatorname{gcd}(n, s)$ and $d_{k}=\operatorname{gcd}(n, k)$. Assume that $r<k$ and $r<s$. Futhermore, suppose that $d_{s} d_{k}$ divides n.

The classification

Theorem

Let n and k be fixed integers with $k<n$. Set $s=\lfloor(n-1) / k\rfloor$, and define r by $n=s k+r$ for $1 \leq r \leq k$. Define $d_{s}=\operatorname{gcd}(n, s)$ and $d_{k}=\operatorname{gcd}(n, k)$. Assume that $r<k$ and $r<s$. Futhermore, suppose that $d_{s} d_{k}$ divides n. There is a bijection between the set of clockwise (s, k)-clash-free permutations with $\pi(0)=0$ and the set $J(s, k, n)$ of (s, k, n)-jumpers.

Thanks!

