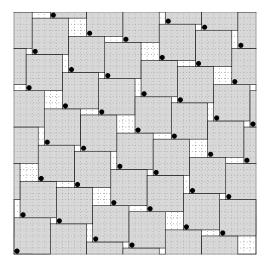
Permutations that separate close elements

Simon R. Blackburn Royal Holloway University of London

Joint work with Tuvi Etzion (Technion)

22-23 May 2023

Torus packings



For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.

 $||i,j||_n = \min\{(i-j) \mod n, (j-i) \mod n\}.$

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.

$$||i,j||_n = \min\{(i-j) \mod n, (j-i) \mod n\}.$$

Definition (An overlapping rectangle)

A permutation $\pi : \mathbb{Z}_n \to \mathbb{Z}_n$ has an (s, k)-clash if there exist distinct $i, j \in \mathbb{Z}_n$ with $||i, j||_n < s$ and $||\pi(i), \pi(j)||_n < k$.

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.

$$||i,j||_n = \min\{(i-j) \mod n, (j-i) \mod n\}.$$

Definition (An overlapping rectangle)

A permutation $\pi : \mathbb{Z}_n \to \mathbb{Z}_n$ has an (s, k)-clash if there exist distinct $i, j \in \mathbb{Z}_n$ with $||i, j||_n < s$ and $||\pi(i), \pi(j)||_n < k$.

Definition (No overlapping rectangles)

A permutation $\pi : \mathbb{Z}_n \to \mathbb{Z}_n$ is (s, k)-clash-free if it has no (s, k)-clashes.

Related work

 Generalisations of k = 2 case: cyclic matching sequencability for graphs: Alspach, Bull. ICA 2008, Brualdi–Kiernan–Meyer, Australas. J. Comb. 2012; Kreher–Pastine–Tollefson, Australas. J. Comb. 2015.

Related work

- Generalisations of k = 2 case: cyclic matching sequencability for graphs: Alspach, Bull. ICA 2008, Brualdi-Kiernan-Meyer, Australas. J. Comb. 2012; Kreher-Pastine-Tollefson, Australas. J. Comb. 2015.
- Non-cyclic case (cylinder or square, not torus): Mammoliti-Simpson, *Australas. J. Comb.* 2020.

Related work

- Generalisations of k = 2 case: cyclic matching sequencability for graphs: Alspach, Bull. ICA 2008, Brualdi-Kiernan-Meyer, Australas. J. Comb. 2012; Kreher-Pastine-Tollefson, Australas. J. Comb. 2015.
- Non-cyclic case (cylinder or square, not torus): Mammoliti-Simpson, *Australas. J. Comb.* 2020.
- Packing diamonds rather than rectangles (large distance in the Manhattan metric): Aspvell–Liang Stanford Tech. Report 1980; Bevan–Homberger–Tenner JCT-A 2018; SRB–Homberger–Winkler JCT-A 2019.

Definition (How wide can rectangles be?)

Let *n* and *k* be fixed. Define $\sigma(n, k)$ to be the largest *s* such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Definition (How wide can rectangles be?)

Let *n* and *k* be fixed. Define $\sigma(n, k)$ to be the largest *s* such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Theorem (Mammoliti-Simpson, Australian J. Comb. 2020)

 $\sigma(n,k) \leq \lfloor (n-1)/k \rfloor$

Definition (How wide can rectangles be?)

Let *n* and *k* be fixed. Define $\sigma(n, k)$ to be the largest *s* such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Theorem (Mammoliti-Simpson, Australian J. Comb. 2020)

 $\sigma(n,k) \leq \lfloor (n-1)/k \rfloor$

Proof.

 $nsk \leq n^2$.

Definition (How wide can rectangles be?)

Let *n* and *k* be fixed. Define $\sigma(n, k)$ to be the largest *s* such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

Theorem (Mammoliti-Simpson, Australian J. Comb. 2020)

 $\sigma(n,k) \leq \lfloor (n-1)/k \rfloor$

Proof.

$$nsk \leq n^2$$
.

We can't have sk = n:

Definition (How wide can rectangles be?)

Let *n* and *k* be fixed. Define $\sigma(n, k)$ to be the largest *s* such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

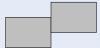
Theorem (Mammoliti-Simpson, Australian J. Comb. 2020)

$$\sigma(n,k) \leq \lfloor (n-1)/k \rfloor$$

Proof.

$$nsk \leq n^2$$
.

We can't have sk = n:



So
$$sk \leq n-1$$
.

Simon R. Blackburn (RHUL)

Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$\lfloor (n-1)/k
floor - 1 \le \sigma(n,k) \le \lfloor (n-1)/k
floor$$

Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$\lfloor (n-1)/k
floor - 1 \le \sigma(n,k) \le \lfloor (n-1)/k
floor$$

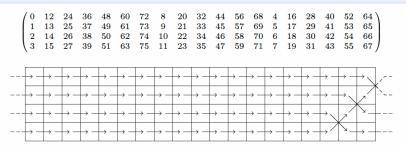
Proof. (n, k, s) = (76, 6, 11).

Mammoliti-Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$\lfloor (n-1)/k
floor - 1 \le \sigma(n,k) \le \lfloor (n-1)/k
floor$$

Proof. (n, k, s) = (76, 6, 11).

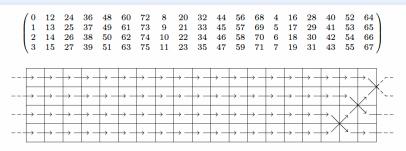


Mammoliti-Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$\lfloor (n-1)/k
floor - 1 \le \sigma(n,k) \le \lfloor (n-1)/k
floor$$

Proof. (n, k, s) = (76, 6, 11).



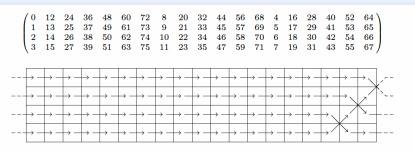
Set $\rho(0) = 0$, $\rho(1) = 12$, and so on. ρ is (k, s)-clash-free.

Mammoliti-Simpson conjecture

Theorem (SRB, JCT-A 2023)

$$\lfloor (n-1)/k
floor - 1 \le \sigma(n,k) \le \lfloor (n-1)/k
floor$$

Proof. (n, k, s) = (76, 6, 11).



Set $\rho(0) = 0$, $\rho(1) = 12$, and so on. ρ is (k, s)-clash-free. Set $\pi = \rho^{-1}$. Then π is (s, k)-clash-free.

Theorem (SRB-Etzion, 2023+)

Let n and k be fixed positive integers, with k < n. Write $s = \lfloor (n-1)/k \rfloor$, so n = sk + r where $1 \le r \le k$.

Theorem (SRB-Etzion, 2023+)

Let n and k be fixed positive integers, with k < n. Write $s = \lfloor (n-1)/k \rfloor$, so n = sk + r where $1 \le r \le k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

Theorem (SRB-Etzion, 2023+)

Let n and k be fixed positive integers, with k < n. Write $s = \lfloor (n-1)/k \rfloor$, so n = sk + r where $1 \le r \le k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

• If $r \ge s$ or k = r, then $\sigma(n, k) = \lfloor (n-1)/k \rfloor$.

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with k < n. Write $s = \lfloor (n-1)/k \rfloor$, so n = sk + r where $1 \le r \le k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

- If $r \ge s$ or k = r, then $\sigma(n, k) = \lfloor (n-1)/k \rfloor$.
- If r < s and r < k and $d_s d_k$ divides n, then $\sigma(n, k) = \lfloor (n-1)/k \rfloor$.

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with k < n. Write $s = \lfloor (n-1)/k \rfloor$, so n = sk + r where $1 \le r \le k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

• If
$$r \ge s$$
 or $k = r$, then $\sigma(n, k) = \lfloor (n-1)/k \rfloor$.

• If r < s and r < k and $d_s d_k$ divides n, then $\sigma(n, k) = \lfloor (n-1)/k \rfloor$.

• If
$$r < s$$
 and $r < k$ and $d_s d_k$ does not divide n , then $\sigma(n,k) = \lfloor (n-1)/k \rfloor - 1$.

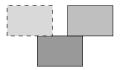
Assume n = sk + r where $1 \le r < \min\{k, s\}$.

Assume n = sk + r where $1 \le r < \min\{k, s\}$.

In every row, and every column, exactly r positions are uncovered.

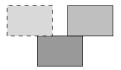
Assume n = sk + r where $1 \le r < \min\{k, s\}$.

In every row, and every column, exactly r positions are uncovered. Every rectangle touches 4 others, one on each side:



Assume n = sk + r where $1 \le r < \min\{k, s\}$.

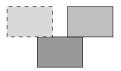
In every row, and every column, exactly r positions are uncovered. Every rectangle touches 4 others, one on each side:



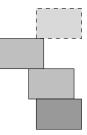
Rectangles form east-west and north-south lines: warp and weft threads.

Assume n = sk + r where $1 \le r < \min\{k, s\}$.

In every row, and every column, exactly r positions are uncovered. Every rectangle touches 4 others, one on each side:

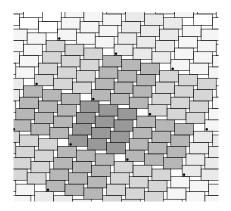


Rectangles form east-west and north-south lines: warp and weft threads. Threads cannot change direction:

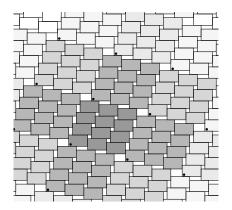


Threads must be periodic, giving the condition that $d_s d_k$ divides *n*.

Threads must be periodic, giving the condition that $d_s d_k$ divides *n*. The structure must look something like this:



Threads must be periodic, giving the condition that $d_s d_k$ divides *n*. The structure must look something like this:



Can classify permutations by jumpers: two sequences determining sizes of gaps.

Jumpers

Definition

An (s, k, n)-jumper is a pair $((a_i), (b_i))$ of sequences of integers with the following properties:

- **(** a_i) has period dividing d_s , and (b_i) has period dividing d_k .
- **2** We have $1 \le a_i < s$ and $1 \le b_i < k$ for $i \ge 0$.
- The d_k partial sums $\sum_{i=0}^{\ell-1} b_i$ where $0 \le \ell < d_s$ are distinct modulo d_k . Moreover, $d_s d_k$ divides σ_b where $\sigma_b = \sum_{i=0}^{d_k-1} b_i$.
- The d_s partial sums $\sum_{i=0}^{m-1} a_i$ where $0 \le m < d_s$ are distinct modulo d_s . Moreover, $d_s d_k$ divides σ_a where $\sigma_a = \sum_{i=0}^{d_s-1} a_i$.

Solution Defining σ_a and σ_b as above, $\sigma_a \sigma_b = d_s d_k r$.

The classification

Theorem

Let n and k be fixed integers with k < n. Set $s = \lfloor (n-1)/k \rfloor$, and define r by n = sk + r for $1 \le r \le k$. Define $d_s = \gcd(n, s)$ and $d_k = \gcd(n, k)$. Assume that r < k and r < s. Futhermore, suppose that d_sd_k divides n.

The classification

Theorem

Let n and k be fixed integers with k < n. Set $s = \lfloor (n-1)/k \rfloor$, and define r by n = sk + r for $1 \le r \le k$. Define $d_s = \gcd(n, s)$ and $d_k = \gcd(n, k)$. Assume that r < k and r < s. Futhermore, suppose that d_sd_k divides n. There is a bijection between the set of clockwise (s, k)-clash-free permutations with $\pi(0) = 0$ and the set J(s, k, n) of (s, k, n)-jumpers.

Thanks!