Permutations that separate close elements

Simon R. Blackburn
Royal Holloway University of London

Joint work with Tuvi Etzion (Technion)

22–23 May 2023
Torus packings
Algebraic phrasing

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.
Algebraic phrasing

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.

$$||i, j||_n = \min\{(i - j) \mod n, (j - i) \mod n\}.$$
For \(i, j \in \mathbb{Z}_n \), let \(||i, j||_n \) be the distance between \(i \) and \(j \) when the elements of \(\mathbb{Z}_n \) are written in a circle.

\[
||i, j||_n = \min\{(i - j) \mod n, (j - i) \mod n\}.
\]

Definition (An overlapping rectangle)

A permutation \(\pi : \mathbb{Z}_n \to \mathbb{Z}_n \) has an \((s, k)\)-clash if there exist distinct \(i, j \in \mathbb{Z}_n \) with \(||i, j||_n < s \) and \(||\pi(i), \pi(j)||_n < k \).
Algebraic phrasing

For $i, j \in \mathbb{Z}_n$, let $||i, j||_n$ be the distance between i and j when the elements of \mathbb{Z}_n are written in a circle.

$$||i, j||_n = \min\{(i - j) \mod n, (j - i) \mod n\}.$$

Definition (An overlapping rectangle)

A permutation $\pi : \mathbb{Z}_n \rightarrow \mathbb{Z}_n$ has an (s, k)-clash if there exist distinct $i, j \in \mathbb{Z}_n$ with $||i, j||_n < s$ and $||\pi(i), \pi(j)||_n < k$.

Definition (No overlapping rectangles)

A permutation $\pi : \mathbb{Z}_n \rightarrow \mathbb{Z}_n$ is (s, k)-clash-free if it has no (s, k)-clashes.
Related work

Related work

The main question

Definition (How wide can rectangles be?)

Let \(n \) and \(k \) be fixed. Define \(\sigma(n, k) \) to be the largest \(s \) such that an \((s, k)\)-clash-free permutation \(\pi \) of \(\mathbb{Z}_n \) exists.
The main question

Definition (How wide can rectangles be?)

Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

$$\sigma(n, k) \leq \lfloor (n - 1)/k \rfloor$$
The main question

Definition (How wide can rectangles be?)

Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

$$\sigma(n, k) \leq \left\lfloor (n - 1)/k \right\rfloor$$

Proof.

$$nsk \leq n^2.$$
The main question

Definition (How wide can rectangles be?)
Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

$$\sigma(n, k) \leq \lfloor (n-1)/k \rfloor$$

Proof.

$$nsk \leq n^2.$$ We can’t have $sk = n$:
The main question

Definition (How wide can rectangles be?)
Let n and k be fixed. Define $\sigma(n, k)$ to be the largest s such that an (s, k)-clash-free permutation π of \mathbb{Z}_n exists.

$$\sigma(n, k) \leq \left\lfloor (n - 1)/k \right\rfloor$$

Proof.

$$nks \leq n^2.$$
We can’t have $sk = n$:

So $sk \leq n - 1$. \qed
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\lfloor \frac{n-1}{k} \rfloor - 1 \leq \sigma(n, k) \leq \lfloor \frac{n-1}{k} \rfloor\]

Proof. \((n, k, s) = (76, 6, 11)\).

Set \(\rho(0) = 0, \rho(1) = 12, \ldots\). \(\rho\) is \((k, s)\)-clash-free.

Set \(\pi = \rho - 1\). Then \(\pi\) is \((s, k)\)-clash-free.
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[
\left\lfloor \frac{(n - 1)}{k} \right\rfloor - 1 \leq \sigma(n, k) \leq \left\lfloor \frac{(n - 1)}{k} \right\rfloor
\]

Proof. \((n, k, s) = (76, 6, 11).\)
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\left\lfloor \frac{(n - 1)}{k} \right\rfloor - 1 \leq \sigma(n, k) \leq \left\lfloor \frac{(n - 1)}{k} \right\rfloor\]

Proof. \((n, k, s) = (76, 6, 11)\).

\[
\begin{pmatrix}
0 & 12 & 24 & 36 & 48 & 60 & 72 & 8 & 20 & 32 & 44 & 56 & 68 & 4 & 16 & 28 & 40 & 52 & 64 \\
1 & 13 & 25 & 37 & 49 & 61 & 73 & 9 & 21 & 33 & 45 & 57 & 69 & 5 & 17 & 29 & 41 & 53 & 65 \\
2 & 14 & 26 & 38 & 50 & 62 & 74 & 10 & 22 & 34 & 46 & 58 & 70 & 6 & 18 & 30 & 42 & 54 & 66 \\
\end{pmatrix}
\]
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\left\lfloor \frac{(n - 1)}{k} \right\rfloor - 1 \leq \sigma(n, k) \leq \left\lfloor \frac{(n - 1)}{k} \right\rfloor \]

Proof. \((n, k, s) = (76, 6, 11)\).

Set \(\rho(0) = 0\), \(\rho(1) = 12\), and so on. \(\rho\) is \((k, s)\)-clash-free.
Mammoliti–Simpson conjecture

Theorem (SRB, JCT-A 2023)

\[\lfloor (n - 1)/k \rfloor - 1 \leq \sigma(n, k) \leq \lfloor (n - 1)/k \rfloor \]

Proof. \((n, k, s) = (76, 6, 11)\).

Set \(\rho(0) = 0, \rho(1) = 12\), and so on. \(\rho\) is \((k, s)\)-clash-free. Set \(\pi = \rho^{-1}\).

Then \(\pi\) is \((s, k)\)-clash-free.
Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor \frac{n-1}{k} \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$.

Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor \frac{n-1}{k} \rfloor$.

If $r < s$ and $r < k$ and $d_s d_k$ divides n, then $\sigma(n, k) = \lfloor \frac{n-1}{k} \rfloor$.

If $r < s$ and $r < k$ and $d_s d_k$ does not divide n, then $\sigma(n, k) = \lfloor \frac{n-1}{k} \rfloor - 1$.

Which case occurs?
Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor (n - 1)/k \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$.

Simon R. Blackburn (RHUL)

Permutations that separate close elements
Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor (n - 1)/k \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.

If $r < s$ and $r < k$ and $d_s d_k$ divides n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.

If $r < s$ and $r < k$ and $d_s d_k$ does not divide n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor - 1$.

Simon R. Blackburn (RHUL)
Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor (n - 1)/k \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

- If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.

- If $r < s$ and $r < k$ and $d_s d_k$ does not divide n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor - 1$.

Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor (n - 1)/k \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

- If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.
- If $r < s$ and $r < k$ and $d_s d_k$ divides n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor - 1$.
Which case occurs?

Theorem (SRB–Etzion, 2023+)

Let n and k be fixed positive integers, with $k < n$. Write $s = \lfloor (n - 1)/k \rfloor$, so $n = sk + r$ where $1 \leq r \leq k$. Define $d_k = \gcd(n, k)$ and $d_s = \gcd(n, s)$.

- If $r \geq s$ or $k = r$, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.
- If $r < s$ and $r < k$ and $d_s d_k$ divides n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor$.
- If $r < s$ and $r < k$ and $d_s d_k$ does not divide n, then $\sigma(n, k) = \lfloor (n - 1)/k \rfloor - 1$.
A sketch proof

Assume $n = sk + r$ where $1 \leq r < \min\{k, s\}$.
A sketch proof

Assume \(n = sk + r \) where \(1 \leq r < \min\{k, s\} \).
In every row, and every column, exactly \(r \) positions are uncovered.
A sketch proof

Assume $n = sk + r$ where $1 \leq r < \min\{k, s\}$.

In every row, and every column, exactly r positions are uncovered. Every rectangle touches 4 others, one on each side:
A sketch proof

Assume $n = sk + r$ where $1 \leq r < \min\{k, s\}$.

In every row, and every column, exactly r positions are uncovered.

Every rectangle touches 4 others, one on each side:

Rectangles form east-west and north-south lines: warp and weft threads.
A sketch proof

Assume $n = sk + r$ where $1 \leq r < \min\{k, s\}$.

In every row, and every column, exactly r positions are uncovered.

Every rectangle touches 4 others, one on each side:

Rectangles form east-west and north-south lines: warp and weft threads.

Threads cannot change direction:
A sketch proof 2

Threads must be periodic, giving the condition that d_sd_k divides n.
A sketch proof 2

Threads must be periodic, giving the condition that $d_s d_k$ divides n. The structure must look something like this:
A sketch proof 2

Threads must be periodic, giving the condition that $d_s d_k$ divides n. The structure must look something like this:

Can classify permutations by *jumpers*: two sequences determining sizes of gaps.
An \((s, k, n)\)-jumper is a pair \(((a_i), (b_i))\) of sequences of integers with the following properties:

1. \((a_i)\) has period dividing \(d_s\), and \((b_i)\) has period dividing \(d_k\).
2. We have \(1 \leq a_i < s\) and \(1 \leq b_i < k\) for \(i \geq 0\).
3. The \(d_k\) partial sums \(\sum_{i=0}^{\ell-1} b_i\) where \(0 \leq \ell < d_s\) are distinct modulo \(d_k\). Moreover, \(d_s d_k\) divides \(\sigma_b\) where \(\sigma_b = \sum_{i=0}^{d_k-1} b_i\).
4. The \(d_s\) partial sums \(\sum_{i=0}^{m-1} a_i\) where \(0 \leq m < d_s\) are distinct modulo \(d_s\). Moreover, \(d_s d_k\) divides \(\sigma_a\) where \(\sigma_a = \sum_{i=0}^{d_s-1} a_i\).
5. Defining \(\sigma_a\) and \(\sigma_b\) as above, \(\sigma_a \sigma_b = d_s d_k r\).
The classification

Theorem

Let \(n \) and \(k \) be fixed integers with \(k < n \). Set \(s = \lfloor (n - 1)/k \rfloor \), and define \(r \) by \(n = sk + r \) for \(1 \leq r \leq k \). Define \(d_s = \gcd(n, s) \) and \(d_k = \gcd(n, k) \).

Assume that \(r < k \) and \(r < s \). Furthermore, suppose that \(d_s d_k \) divides \(n \).
The classification

Theorem

Let n and k be fixed integers with $k < n$. Set $s = \lceil (n - 1)/k \rceil$, and define r by $n = sk + r$ for $1 \leq r \leq k$. Define $d_s = \gcd(n, s)$ and $d_k = \gcd(n, k)$. Assume that $r < k$ and $r < s$. Furthermore, suppose that $d_s d_k$ divides n.

There is a bijection between the set of clockwise (s, k)-clash-free permutations with $\pi(0) = 0$ and the set $J(s, k, n)$ of (s, k, n)-jumpers.
Thanks!