New Refinements of a Classical Formula in Consecutive Pattern Avoidance

Yan Zhuang
yazhuang@davidson.edu
Davidson College

Let $\operatorname{Av}_{n}(\pi)$ denote the set of all permutations of length n avoiding π as a consecutive pattern. In 1962, David and Barton [1] gave the exponential generating function formula

$$
\sum_{n=0}^{\infty}\left|\operatorname{Av}_{n}(12 \cdots m)\right| \frac{x^{n}}{n!}=\left[\sum_{n=0}^{\infty}\left(\frac{x^{m n}}{(m n)!}-\frac{x^{m n+1}}{(m n+1)!}\right)\right]^{-1}
$$

for counting permutations avoiding the monotone consecutive pattern $12 \cdots m$. David and Barton's formula can be proven in a multitude of ways, one of which is the celebrated cluster method of Goulden and Jackson [5], adapted for permutations by Elizalde and Noy [3]. More recently, Elizalde [2] gave a q-analogue of the Goulden-Jackson cluster method which he then used to derive a refinement of David and Barton's formula that also keeps track of the inversion number.

In this talk, we present several refinements of David and Barton's formula for "inverse statistics". Given a permutation statistic st, let us define its inverse statistic ist by ist $(\pi)=\operatorname{st}\left(\pi^{-1}\right)$. For example, if des is the descent number statistic, then the inverse descent number is given by $\operatorname{ides}(\pi)=\operatorname{des}\left(\pi^{-1}\right)$. One of our new results is the following. Define $A_{m, n}(t, q)$ by

$$
A_{m, n}(t, q):=\sum_{\pi \in \operatorname{Av}_{n}(12 \cdots m)} t^{\operatorname{ides}(\pi)+1} q^{\operatorname{imaj}(\pi)}
$$

for $n \geq 1$ and $A_{m, 0}(t, q):=1$. Then if $m \geq 2$, we have

$$
\sum_{n=0}^{\infty} \frac{A_{m, n}(t, q)}{\prod_{i=0}^{n}\left(1-t q^{i}\right)} x^{n}=1+\sum_{k=0}^{\infty}\left[\sum_{j=0}^{\infty}\left(\binom{k+j m-1}{k-1}_{q} x^{j m}-\binom{k+j m}{k-1}_{q} x^{j m+1}\right)\right]^{-1} t^{k} .
$$

We also prove analogous formulas for the "inverse peak number" and "inverse left peak number" statistics, and present real-rootedness conjectures for the associated polynomials.

To derive these new formulas, we first prove a lifting of the Goulden-Jackson cluster method to the Malvenuto-Reutenauer algebra FQSym (also known as the algebra of free quasisymmetric functions). By applying appropriate homomorphisms to the cluster method in FQSym, we can recover both the cluster method for permutations as well as Elizalde's q-analogue, so the cluster method in FQSym can be thought of as a unifying generalization of both. Additional homomorphisms can be obtained from the theory of shuffle-compatibility developed by Gessel and Zhuang [4], as every "shuffle-compatible" permutation statistic st induces a homomorphism on FQSym which can be used to count permutations by ist. By applying these new homomorphisms to the result of applying the cluster method in FQSym to the monotone consecutive pattern $12 \cdots m$, we obtain our formulas.
[1] F. N. David and D. E. Barton. Combinatorial Chance. Lubrecht \& Cramer Ltd, 1962.
[2] S. Elizalde. A survey of consecutive patterns in permutations. In Recent Trends in Combinatorics, volume 159 of IMA Vol. Math. Appl., pages 601-618. Springer, [Cham], 2016.
[3] S. Elizalde and M. Noy. Clusters, generating functions and asymptotics for consecutive patterns in permutations. Adv. in Appl. Math., 49(3-5):351-374, 2012.
[4] I. M. Gessel and Y. Zhuang. Shuffle-compatible permutation statistics. Adv. Math., 332:85-141, 2018.
[5] I. P. Goulden and D. M. Jackson. An inversion theorem for cluster decompositions of sequences with distinguished subsequences. J. London Math. Soc. (2), 20(3):567-576, 1979.

