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The number of occurrences of any fixed vincular permutation pattern in a uniform per-
mutation is known to satisfy a central limit theorem. Using a comparaison technique,
we extend this result to other non-uniform permutations. The technique can be used for
other statistics.

1 Main result

A random permutation σn is called conjugation invariant if its law is conjugation invariant

i.e. if ρ ◦ σn ◦ ρ−1 d
= σn for any ρ ∈ Sn. For example, the uniform permutation, a

uniform cyclic permutation and (generalized) Ewens permutations are classic examples
of conjugation invariant permutations.

A vincular pattern of size p is a couple (τ,X) such that τ ∈ Sp and X ⊂ [p− 1]. Given
σ ∈ Sn, an occurrence of (τ,X) is a list i1 < · · · < ip such that

� ix+1 = ix + 1 for any x ∈ X.

� (σ(i1), . . . , σ(ip)) is in the same relative order as (τ(i1), . . . , τ(ip)).

We denote by N(τ,X)(σ) the number of occurrences of (τ,X) in σ.

For the uniform case, Bóna [2], Janson et al. [5] and Hofer [4] proved respectively a CLT
for monotone, classic and vincular patterns. Féray [3] gave a generalization for the Ewens
distribution. In particular, Hofer [4] proved that for any τ ∈ Sp and any X ⊂ [p− 1],

N(τ,X)(σunif,n)− np−q

p!(p−q)!

np−q−
1
2

d−−−→
n→∞

N (0, Vτ,X). (1)

Here, σunif,n is a uniform permutation of size n, q = card(X) and Vτ,X > 0. We prove the
folowing.

1The full paper is available in https://arxiv.org/pdf/2012.05845.pdf



σunif,3 T (σunif,3) T 2(σunif,3)
Id 1/6 0 0
(1, 2) 1/6 1/18 0
(1, 3) 1/6 1/18 0
(2, 3) 1/6 1/18 0
(1, 2, 3) 1/6 5/12 1/2
(1, 3, 2) 1/6 5/12 1/2

Table 1: Transitions for σunif,3

Proposition 1. Suppose that for any n ≥ 1, σn is conjugation invariant random permu-
tation of Sn and the sequence of number of cycles (#(σn))n≥1 satisfies

#(σn)√
n

d−−−→
n→∞

0 (2)

Then, for any τ ∈ Sp and any X ⊂ [p− 1]

N(τ,X)(σn)− np−q

p!(p−q)!

np−q−
1
2

d−−−→
n→∞

N (0, Vτ,X). (3)

We give the proof of this result in the next section. We give then an idea of a generalization
to other statistics on permutations using the same kind of proofs.

2 Idea of proof

The proof uses a coupling argument. We will define a Markov chain with an Ewens
stationary measure and such that conjugation invariant random permutations with few
cycles are converges to the stationary measure rapidly. Formally, let ρn be a conjuga-
tion invariant random permutation. The idea is to modify ρn to obtain a uniform cyclic
permutation. We define the following Markov operator T :

� If the realization σ of ρn has one cycle, σ remains unchanged (T (σ) = σ).

� Otherwise, we choose a couple (i, j) uniformly from the nonempty set

{(i, j) : j /∈ Ci(σ)}

and we take T (σ) = σ ◦ (i, j). Here Ci(σ) is the cycle of σ containing i.

For example, for n = 3, transition probabilities of T are given in Figure 1. We denote
by T k(ρn) the random permutation obtained after applying k times the operator T . It is
the random permutation obtained after k steps of the uniform random walk on GSn with
initial state ρn. Table 1 sums up the evolution of the random walk if we start from the
uniform distribution on S3. We have then the following :
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Figure 1: The transition probabilities of T for n = 3

� If σn is conjugation invariant then T (σn) is conjugation invariant and #(T (σn)) =

max(#(T (σn))−1, 1). Consequently, T n−1(ρn)
d
= σEw,0,n. Where σEw,0,n is a uniform

cyclic permutation of length n.

� Almost surely,

|N(τ,X)(ρn)−N(τ,X)(T
n−1(ρn))| ≤ np−q#(ρn).

Choosing first ρn a uniform permutation, we obtain that (1) is equivalent to (3) for
σn = σEw,0,n. In a second step, we choose ρn a conjugation invariant random permutation
satisfying (2). In the case, the convergence in (3) (for σn = ρn) is again equivalent to the
same convergence in the particle case σn = σEw,0,n which concludes the proof.

3 Generalization

This technique is not specific to permutation patterns. Given n ≥ 1 and E ⊂ Sn, we
define

next(E) := {ρ ◦ (i, j); ρ ∈ E, #(ρ ◦ (i, j)) = #(ρ)− 1} ∪ {ρ ∈ E; #(ρ) = 1}

and

final(σ) :=

{
next#(σ)−1({σ}) if #(σ) > 1

{σ} otherwise
.

In other words, next(E) is the set of permutations obtained by concatenating, if pos-
sible, two cycles of some σ ∈ E, and final(σ) is the set of permutations obtained by
concatenating all the cycles of σ. In particular,

final(σ) ⊂ S0
n := {σ ∈ Sn; #(σ) = 1}.



Let f be a function defined on S∞ := ∪∞i=1Sn and taking its values in some metric space
(F, dF ), for example Z, R, or Rd. We define for 1 ≤ k ≤ n,

ε′n,k(f) := max
σ∈Sn,#(σ)=k

max
ρ∈final(σ)

dF (f(σ), f(ρ)).

We present now our main result.

Theorem 2. Assume that for any n ≥ 1, (σn) and (σref,n) are conjugation invariant
permutations of size n. Suppose that there exists x ∈ F such that

f(σref,n)
P−−−→

n→∞
x, (4)

ε′n,#(σref,n)(f)
P−−−→

n→∞
0 (5)

and that ε′n,#(σn)(f)
P−−−→

n→∞
0. (6)

Then

f(σn)
P−−−→

n→∞
x. (7)

Moreover, if the assumptions (4)–(6) hold true for the Lp convergence for some p ≥ 1
instead of the convergence in probability, then so does (7).

When F = Rd, we obtain also the convergence in distribution.

Theorem 3. Assume that F = Rd and that for any n ≥ 1, (σn) and (σref,n) are conjuga-
tion invariant permutations of size n. Suppose that (5) and (6) hold true and that there
exists a random variable X supported on F such that

f(σref,n)
d−−−→

n→∞
X.

Then

f(σn)
d−−−→

n→∞
X.

This result can be applied to many statistics including the descent process, the shape of a
permutation by RSK, the number of exceedences and the longest increasing (decreasing,
alternating, common) subsequence. We detailed those applications in the full version of
this work. We give here only one example to illustrate this result.

Given σ ∈ Sn, a subsequence (σ(i1), . . . , σ(ik)) is an increasing (resp. decreasing) subse-
quence of σ of length k if i1 < · · · < ik and σ(i1) < · · · < σ(ik) (resp. σ(i1) > · · · > σ(ik)).
We denote by LIS(σ) (resp. LDS(σ)) the length of the longest increasing (resp. decreasing)
subsequence of σ. For example,

if σ =

(
1 2 3 4 5
5 3 2 1 4

)
, LIS(σ) = 2 and LDS(σ) = 4.



Corollary 4. Suppose that for any n ≥ 1, σn is conjugation invariant random permuta-
tion of Sn and

#(σn)
6
√
n

d−−−→
n→∞

0.

Then,

P
(

LIS(σn)− 2
√
n

n
1
6

≤ s

)
−−−→
n→∞

F2(s),

where F2 is the cumulative distribution function of the GUE Tracy-Widom distribution.

This result generalizes that of Baik, Deift and Johansson[1] who proved these fluctuations
for the uniform case.
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