
Monday, June 11

08:00 - 08:50 Registration

08:50 - 09:00 Conference opening

Morning session chaired by Anders Claesson

09:00 - 09:30 Sergey Kitaev
On permutation boxed mesh patterns

09:30 - 10:00 Andrew M. Baxter
Shape-Wilf-equivalences for vincular patterns

10:00 - 10:30 Refreshments

10:30 - 11:00 Vincent Vajnovszki
Lehmer code transforms and Mahonian statistics on permutations

11:00 - 11:30 Mark Dukes
Parallelogram polyominoes, the sandpile model on Km,n, and a q, t-Narayana polynomial

11:30 - 12:00 Hjalti Magnússon
Stack-sorting and preimages of mesh patterns

12:00 - 13:30 Lunch

Afternoon session chaired by Lara Pudwell

13:30 - 14:00 Rebecca Smith
Sorting with modified devices

14:00 - 14:30 Dominique Rossin
Asymptotics of push-all permutations

14:30 - 15:00 Adeline Pierrot
Two-stacks sorting is polynomial

15:00 - 15:30 Refreshments

15:30 - 16:00 Mathilde Bouvel
Enumeration of permutations sorted with two passes through a stack and D8 symmetries

16:00 - 16:30 Janine LoBue
Permuted Basement Fillings, k-ary Trees, and Watermelons



Tuesday, June 12

Morning session chaired by Mike Atkinson

09:00 - 09:30 Brian Nakamura
Permutations with exactly r occurrences of a length three pattern

09:30 - 10:00 Alexander Woo
Bruhat graphs and pattern avoidance

10:00 - 10:30 Refreshments

10:30 - 11:30 Vincent Vatter
Small permutation classes

11:30 - 12:00 Miklós Bóna
Surprising Symmetries in Objects Counted by the Catalan numbers

12:00 - 13:30 Lunch

Afternoon session chaired by Mathilde Bouvel

13:30 - 14:00 Cheyne Homberger
Expected Patterns in Permutations Avoiding 123

14:00 - 14:30 Vı́t Jeĺınek
Stanley-Wilf limits of layered patterns

14:30 - 15:00 Alexander Burstein
A combinatorial proof of joint equidistribution of certain pairs of permutation statistics

15:00 - 15:30 Refreshments

15:30 - 16:00 Anant Godbole
Covering all n-permutations with (n + 1)-permutations

16:00 - 16:30 Martha Liendo
Random Superpatterns

Wednesday, June 13

Morning session chaired by Rebecca Smith

09:00 - 09:30 Mike Atkinson
Priority Queues and Pattern Classes

09:30 - 10:00 Michael Albert
PermLab: software for permutation patterns

10:00 - 10:30 Refreshments

10:30 - 11:00 Ruth Hoffmann
PatternClass: A GAP Package for Permutation Pattern Classes

11:00 - 11:30 Marie-Louise Bruner
A Fast Algorithm for Permutation Pattern Matching Based on Alternating Runs

11:30 - 12:00 Henning Ulfarsson
Automated discovery of permutation patterns

12:00 - 13:30 Lunch

13:45 - 17:00 Excursion to Stirling Castle

18:00 - 20:00 Conference dinner at The River House Restaurant



Thursday, June 14

Morning session chaired by Sergey Kitaev

09:00 - 09:30 Jeffrey Remmel
Up-down ascent sequences and the q-Genocchi numbers

09:30 - 10:00 Miles Jones
Generating functions for permutations with no consecutive pattern matches within the cycles

10:00 - 10:30 Refreshments

10:30 - 11:00 Adrian Duane
Consecutive Patterns in up-down permutations

11:00 - 11:30 Luca Ferrari
The Möbius function of the consecutive pattern poset

11:30 - 12:00 Mark Tiefenbruck
Extending from bijections between marked occurrences of patterns to all occurrences of patterns

12:00 - 13:30 Lunch

Afternoon session chaired by Einar Steingrimsson

13:30 - 14:00 Brian Miceli
Generalized Interval Embeddings

14:00 - 14:30 Sen-Peng Eu
Adin-Roichman-Mansour type identities

14:30 - 15:00 Kassie Archer
Periodic patterns of k-shifts

15:00 - 15:30 Refreshments

15:30 - 16:15 Problem session

16:15 - 17:00 Business meeting

Friday, June 15

Morning session chaired by Mark Dukes

09:00 - 09:30 Lara K. Pudwell
Non-contiguous pattern avoidance in binary trees

09:30 - 10:00 Adam M. Goyt
Pattern Avoidance in Ordered Partitions

10:00 - 10:30 Refreshments

10:30 - 11:00 Benjamin Fineman
Bounds for the number of permutations containing a low density of patterns

11:00 - 11:30 Jennie Hansen
Random permutations (and beyond)



PermLab: software for permutation patterns

Michael Albert (University of Otago)

PermLab is a Java software suite for assisting in research about (mostly classical) permutation
patterns. It consists of a GUI which greatly extends the capabilities of its predecessor Class-
Counter to include both graphical display and manipulation of single permutations, and the
display of animations which can reveal underlying structure within collections of permutations.
Additionally it includes an extensive applications programming interface which permits the de-
velopment of special purpose code to deal with specific problems without requiring too much
familiarity with Java. As well as demonstrating PermLab I will discuss some of the underlying
algorithms, and its design principles. PermLab is open source and contributions to the code base
from the permutation patterns community are welcomed.

Periodic patterns of k-shifts

Kassie Archer (Dartmouth College)

If f : A → A, where A is a linearly ordered set, we define the pattern of f at x (of length n)
as Pat(x, f, n) = ρ(x, f(x), f2(x), · · · , fn−1(x)) ∈ Sn where ρ is a reduction map that takes in a
list of different elements and returns a permutation π by labeling the smallest element in the list
with a 1, the second smallest with a 2, and so on. For example, ρ(3, 6, 2, 3.4, 100,−2) = 352461.

For instance, if we define the binary shift Σ2 on the set of infinite binary words with lexicographic
order by

Σ2(w1w2w3 · · · ) = w2w3w4 · · · ,
we have that Pat(01101001 · · · ,Σ2, 5) = 25413, since

01001 · · · < 01101001 · · · < 1001 · · · < 101001 · · · < 1101001 · · · .

The above definition assumes that the values x, f(x), . . . , fn−1(x) are all different. Another
interesting case is when x ∈ A is a n-periodic point of f , that is, fn(x) = x but f i(x) 6= x for
1 ≤ i < n. In this case, we say that [π] is the periodic pattern of f at x if Pat(x, f, n) = π. The
n-periodic points of the binary shift are exactly those sequences w = (w1w2 · · ·wn)∞ where the
word w1w2 · · ·wn is primitive (that is, there is no k > 1 so that w1w2 · · ·wn = vk). For example,
the periodic pattern of Σ2 at (00101)∞ is [13524].

It was shown in [1] that for any given piecewise monotone function f : I → I, where I ∈ R is a
closed interval, there exist patterns π that are not realized by f , that is, there is no x ∈ I with
Pat(x, f, n) = π.

In [2], Elizalde characterized and enumerated the patterns realized by the k-shift Σk (i.e., the
shift on k-ary words), which is equivalent to the map x 7→ kx mod 1 on the unit interval.

In this talk, we describe and enumerate the periodic patterns of a few maps, including the k-shift
map and the tent map, which is defined on [0, 1] as

x 7→

{
2x 0 ≤ x ≤ 1/2

2− 2x 1/2 < x ≤ 1.

As a byproduct of the enumeration of periodic patterns of Σk, we derive a recursive formula
describing the number of cyclic permutations of length n with k − 1 descents:

C(n, k) = Lk(n)−
k−1∑
i=2

(
n+ k − i
k − i

)
C(n, i),

where

Lk(n) =
1

n

∑
d|n

µ(d)k
n
d
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is the number of length n primitive words on k letters. The number of length n periodic patterns

of the k-shift is then

n∑
i=2

C(n, i).

We also study periodic patterns of the reverse k-shift, which is equivalent to the map x 7→
1−kx mod 1 on the unit interval. For this purpose, we define an order on infinite sequences on k
letters that plays the role that the lexicographic order has for the k-shift. We conjecture that the
number of length n periodic patterns of the reverse k-shift is the same as the number of length
n periodic patterns of the k-shift, but its relationship to the number of cyclic permutations of
length n with k − 1 ascents is somewhat more complicated in the cases when n is two times an
odd number.

This is joint work with Sergi Elizalde.

[1] C. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations, Nonlinearity
15 (2002), 1595–1602.

[2] S. Elizalde, The number of permutations realized by a shift, SIAM J. Discrete Math. 23
(2009), 765–786.

Priority Queues and Pattern Classes

Mike Atkinson (University of Otago)

A priority queue is a container into which new items can be inserted and items removed: the item
removed is always the smallest item in the container. A sequence of insert and remove operations
therefore transforms an input sequence into an output sequence. Let X be any pattern class and
consider the set X* of possible output permutations when the permutations of X are presented
as input to a priority queue. In general X* is larger than X but it is still a pattern class. We
determine the pattern classes X* that arise when X is taken to have a basis of permutations of
length 3. In particular we prove that X* is finitely based in this case. We also give an example
of a pattern class X with a basis permutation of length 4 for which X* is not finitely based.

Shape-Wilf-equivalences for vincular patterns

Andrew M. Baxter (Penn State University)

We extend the notion of shape-Wilf-equivalence to vincular patterns (also known as ”generalized
patterns” or ”dashed patterns”), and explore the implications for Wilf-classificiation of the set
of vincular patterns. Shape-Wilf-equivalence is a stronger relation than Wilf-equivalence which
can lead to families of Wilf-equivalences. In particular we strengthen a result of Elizalde and
Kitaev by showing σ ⊕ 1 is shape-Wilf-equivalent to τ ⊕ 1 whenever σ and τ are Wilf-equivalent
consecutive patterns. We also prove that 1-23 is shape- Wilf-equivalent to 3-12 and that 1-32
is shape-Wilf-equivalent to 3-21. This settles the Wilf-equivalence of 12-3-4, 12-4-3, 21-3-4, and
21-4-3 conjectured by the author and Pudwell, as well as the Wilf-equivalence of 3-12-4, 1-23-4,
1-32-4, and 3-21-4.

Surprising Symmetries in Objects Counted by the Catalan numbers

Miklós Bóna (University of Florida)

Let Sn,r(q) be the total number of copies of the pattern q in all r-avoiding permutations of length
n. In this paper, we first prove the identities
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Sn,132(312) = Sn,132(231) = Sn,132(213).

The first equality is trivial, but the second one is not. In fact, the two statistics in the second
equality are not equdistributed, but they have the same cumulative value. A proof using gener-
ating functions is relatively straightforward, but we will also present a combinatorial proof. This
is the first 3-fold symmetry in Catalan-like objects we have encountered.

Then we significantly generalize our results by presenting a large class of non-trivial equivalences
in the above sense for patterns of arbitrary length. The proofs of these generalizations are com-
binatorial.

Enumeration of permutations sorted with two passes through a stack and
D8 symmetries

Mathilde Bouvel (LaBRI, CNRS, Univ. Bordeaux)

We denote by S the stack sorting operator on permutations, and by D8 the eight element group
generated by the usual transforms r (reverse), c (complement) and i (inverse). We study the set
of permutations that are sorted by S ◦ α ◦ S (denoted Id(S ◦ α ◦ S)) for α ∈ D8. We provide
a characterization by (generalized) excluded patterns and enumeration results, that are refined
according to a number of usual statistics on permutations.

Theorem 0.1. The sets of permutations that are sorted by S ◦ α ◦ S, for any α in D8 are:

(i) Id(S ◦ S) = Id(S ◦ i ◦ c ◦ r ◦ S) = Av(2341, 35̄241);

(ii) Id(S ◦ c ◦ S) = Id(S ◦ i ◦ r ◦ S) = Av(231);

(iii) Id(S ◦ r ◦ S) = Id(S ◦ i ◦ c ◦ S) = Av(1342, 31-4-2) = Av(1342, 35̄142);

(iv) Id(S ◦ i ◦ S) = Id(S ◦ r ◦ c ◦ S) = Av(3412, 3-4-21).

As we know since the seminal work of Knuth, the set Av(231) (of one-stack sortable permuta-
tions) is enumerated by the Catalan numbers Catn = 1

n+1

(
2n
n

)
. West has conjectured the set

Av(2341, 35̄241) of two-stack sortable permutations is enumerated by 2(3n)!
(n+1)!(2n+1)! , and this for-

mula has been proved by Dulucq, Gire and Guibert. For the two other sets, conjectures on their
enumeration (refined with the distribution of some statistics) have been proposed by Claesson,
Dukes and Steingŕımsson. We prove these conjectures, that are stated as Theorems 0.2 and 0.3
below.

Theorem 0.2. The two sets Id(S◦S) and Id(S◦r◦S) are enumerated according to the size of the
permutations by the same sequence. Moreover, the tuple of statistics (updownword, rmax, lmax,
zeil, indmax, slmax, slmax ◦r) has the same distribution on both sets.

The updownword statistics associates a word w ∈ {u, d}n−1 to each permutation σ of size n, with
wi = u (resp. d) if σ(i) < σ(i+ 1) (resp. σ(i) > σ(i+ 1)). The equidistribution of the statistics
updownword implies that the following statistics are also equidistributed in Id(S◦S) and Id(S◦r◦
S): (des,maj,maj ◦r,maj ◦c,maj ◦rc, valley,peak,ddes,dasc, rir, rdr, lir, ldr). Consequently, the
bijection of Theorem 0.2 preserves the joint distribution of a 20-tuple of statistics on permutations.

Theorem 0.3. The set Id(S ◦ i ◦ S) is enumerated by the Baxter numbers

Baxn =
2

n(n+ 1)2

n∑
k=1

(
n+ 1

k − 1

)(
n+ 1

k

)(
n+ 1

k + 1

)
.

Moreover, the triple of statistics (des, lmax, comp) has the same distribution on Id(S ◦ i ◦ S) and
on the set Av(2-41-3, 3-14-2) of Baxter permutations. It also has the same distribution than the
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triple of statistics (lmax, occµ, comp) on the set Av(2-41-3, 3-41-2) of twisted Baxter permutations,

where occµ denoted the number of occurrences of the mesh pattern µ = .

Theorems 0.2 and 0.3 are proved using generating trees and rewriting systems. Furthermore,
the proof of Theorem 0.3 makes use of a recent effective bijection of Giraudo between Baxter
permutations, twisted Baxter permutations and pairs of twin binary trees.

This is joint work with Olivier Guibert.

A Fast Algorithm for Permutation Pattern Matching Based on Alternat-
ing Runs

Marie-Louise Bruner (Vienna University of Technology)

The PERMUTATION PATTERN MATCHING (PPM) problem asks whether a permutation P
can be matched into a permutation T , i.e. whether T conatins P as pattern. It is known that
PPM is in general NP-complete. However, when restrictions are made on the input instance
efficient algorithms are known. For instance in the case that the pattern P is a separable per-
mutation, PPM can be solved in polynomial time. In this talk I present the first algorithm that
improves upon the O∗(2n) runtime required by brute-force search without imposing restrictions
on P and T . The algorithm exploits the decomposition of permutations into alternating runs and
has an exponential worst-case runtime of O∗(1.79run(T )), where run(T ) denotes the number of
alternating runs of T . It thus performs particularly well when the involved permutations have
few alternating runs.

This talk is based on joint work with Martin Lackner.

A combinatorial proof of joint equidistribution of certain pairs of permu-
tation statistics

Alexander Burstein (Howard University)

We give a direct combinatorial proof of the joint equidistribution of two pairs of permutation
statistics, (aid,des) and (inv, lec), which have been previously shown to have the same joint distri-
bution as (maj, exc), the pair of the major index and the number of excendances of a permutation.
Moreover, the triple (inv, lec, pix) was shown to have the same distribution as (maj, exc, fix), where
fix is the number of fixed points of a permutation. We define a new statistic aix so that our bi-
jection maps (inv, lec, pix) to (aid,des, aix).

Consecutive Patterns in up-down permutations

Adrian Duane (Unversity of California, San Diego)

Let An denote the set of up-down permutations of length n. For any sequence of distinct integers
σ1, . . . , σn, we define red(σ) to be the permutation that results by replacing the i-th smallest
integer in σ by i. If τ ∈ A2j , then we say that an up-down permutation σ = σ1 . . . σn ∈ An has a
τ -match at position i if red(σi, σi+1, . . . , σi+2j−1) = τ and we define τ -mch(σ) to be the number
of τ -matches in σ. We say that τ ∈ A2j has the alternating minimal overlapping property if two
τ -matches in an alternating permutation σ ∈ An can share at most two letters. For such a τ , we
say that σ ∈ Am(2j−2)+2 is an maximal packing for τ if τ -mch(σ) = m, i.e., σ has the maximum
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number of possible τ -matches.

Let τ be an up-down permutation of length 2j with the alternating minimal overlapping property.
We define the generalized maximum packing polynomial of τ GMPτ,2n(x) as follows. Let L be the
set of compositions α = (2a1, 2a2, 2a3, . . . , 2a`) of 2n such that a1 ≥ 0, ai > 0 for all 1 < i ≤ `,
and ai = 1 mod j − 1 for all even i. Suppose that α = (2a1, 2a2, 2a3, . . . , 2a`) ∈ L. Then we let
gmpτ (α) be the number of permutations σ = σ1 . . . σ2n such that if we decompose σ into sequences
as σ = σ(1) . . . σ(`) where σ(i) has length 2ai for i = 1, . . . , `, then (i) σ(i) is an increasing sequence
if i is odd, (ii) red(σ(i)) is a maximum packing for τ if i is even, and (iii) the last element of σ(i) is
less than the first element of σ(i+1) for i = 1, . . . , `−1. We define the weight of the composition α

to be wt(α) = gmpτ (α)(−1)a1χ(a1>0)(−1)
∑

s≥2(a2s−1)(x− 1)
∑

s≥1
2a2s−2
2j−2 where for any statement

A, χ(A) = 1 if A is true and χ(A) = 0 if A is false. We define GMPτ,2n(x) =
∑
α∈L wt(α).

Duane and Remmel proved that for any τ ∈ A2j with the alternating minimal overlapping
property,

1 +
∑
n≥1

tn

n!

∑
σ∈A2n

xτ−mch(σ) =
1

1−
∑
n≥1

t2n

(2n)!GMPτ,2n(x)
.

Thus in order to be able to explicitly calculate this generating function, we need to be able to
compute GMPτ,2n(x). In this paper, we focus on the problem of computing GMPτ,2n(x). We
will describe several infinite families of up-down permutations τ with the alternating minimally
overlapping property for which GMPτ,2n(x) can be computed via simple recursions. In such
situations, we can compute the generating function 1 +

∑
n≥1

tn

n!

∑
σ∈A2n

xτ−mch(σ).

This is joint work with Jeffrey Remmel.

Parallelogram polyominoes, the sandpile model on Km,n, and a q, t-
Narayana polynomial

Mark Dukes (University of Strathclyde)

In this talk I will highlight some results from a recent paper which that was motived by a corre-
spondence between bivincular patterns and composition matrices.

We classify recurrent configurations of the sandpile model on the graph Km,n in terms of poly-
ominoes. A canonical toppling process on these recurrent states gives rise to a ”bounce” path
within the corresponding polyomino. This bounce path gives rise to a polynomial that we call
the q, t-Narayana polynomial. We discuss this q, t-Narayana polynomial and its relation to the
well-known q, t-Catalan polynomial.

(This is joint work with Yvan Le Borgne.)

Adin-Roichman-Mansour type identities

Sen-Peng Eu (National University of Kaohsiung, and Air Force Academy)

In [1], Adin and Roichman proved analytically the following identities, where ldes(π) denotes the
position of the last descent. At the same time, Mansour [2] found a variation for Sn(132).

Theorem 0.4 (Adin-Roichman). Let Sn(321) be the set of 321-avoiding permutations in Sn.
The following identities hold.∑

π∈S2n+1(321)

(−1)inv(π)qldes(π) =
∑

π∈Sn(321)

q2·ldes(π), for n ≥ 0,

5



∑
π∈S2n(321)

(−1)inv(π)qldes(π) = (1− q)
∑

π∈Sn(321)

q2·ldes(π), for n ≥ 1.

Exhausting computer research shows that this ”2n reduces to n” phenomenon is indeed rare. In
this work, we would like to give several new A-R-M type identities, e.g:

Theorem 0.5. Let Bn(321) be the set of 321-avoiding Baxter permutations in Sn. For n ≥ 0,
we have ∑

π∈B2n+1(321)

(−1)maj(π)pfix(π)qdes(π) = p ·
∑

π∈Bn(321)

p2·fix(π)q2·des(π).

Theorem 0.6. Let Altn(321) be the set of 321-avoiding alternating permutations in Sn, and let
lead(π) = π1, the first entry of π. For all n ≥ 1, we have

(i)
∑

π∈Alt4n+2(321)

(−1)inv(π) · qlead(π) = (−1)n+1
∑

π∈Alt2n(321)

q2·lead(π)

(ii)
∑

π∈Alt4n+1(321)

(−1)inv(π) · qlead(π) = (−1)n
∑

π∈Alt2n(321)

q2·lead(π)

(iii)
∑

π∈Alt4n(321)

(−1)inv(π) · qlead(π) = (−1)n+1(1− q)
∑

π∈Alt2n(321)

q2(lead(π)−1)

(iv)
∑

π∈Alt4n−1(321)

(−1)inv(π) · qlead(π) = (−1)n(1− q)
∑

π∈Alt2n(321)

q2(lead(π)−1).

Theorem 0.7. Let DSn(312) be the set of 312-avoiding double simsum permutations in Sn, then

(i)
∑

π∈DS2n+2(312)

(−1)maj(π) · qfix(π) = (−1 + q2)
∑

π∈DSn(312)

q2fix(π), for n ≥ 1.

(ii)
∑

π∈DS2n−1(312)

(−1)maj(π) · qlead(π) =
2

q(1 + q2)

∑
π∈DSn(312)

q2lead(π), for n ≥ 2.

These results are co-worked with T.S Fu, Y.J. Pan and P.L. Yan.

[1] R.M. Adin, Y. Roichman, Equidistribution and sign-balance on 321-avoiding permutations,
Sémin. Loth. Combin. 51 (2004) B51d. ArXiv:math.CO/0304429.

[2] T. Mansour, Equidistribution and sign-balance on 132-avoiding permutations, Séminaire
Lotharingien de Combinatoire 51 (2004) B51e.

The Möbius function of the consecutive pattern poset

Luca Ferrari (University of Firenze)

For the poset of classical permutation patterns, the first results about its Möbius function were
obtained by Sagan and Vatter. Further results have been found by Steingŕımsson and Tenner and
by Burstein, Jeĺınek, Jeĺınková and Steingŕımsson. The general problem in this case of classical
patterns seems quite hard. In contrast, the poset of consecutive pattern containment has a much
simpler structure. Here we compute the Möbius function of that poset. In most cases our results
give an immediate answer. In the remaining cases, we give a polynomial time recursive algorithm
to compute the Möbius function. In particular, we show that the Möbius function only takes the
values −1, 0 and 1.

An interesting result to note in connection to this is Björner’s one on the Möbius function of
factor order. Although that poset is quite different from ours, there are interesting similarities.
In particular, both deal with consecutive subwords and the possible values of the Möbius function
are −1, 0 and 1 in both cases.
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Denote with P the poset of permutations with respect to consecutive pattern containment, and
take σ, τ ∈ P such that σ ≤ τ . In order to present our results, we need a couple of definitions.

Suppose σ occurs in τ = a1a2 . . . an. If ai+1 is the leftmost letter of τ involved in any occurrence
of σ in τ , we say that τ has a left tail of length i with respect to σ. Analogously, τ has a right tail
of length j with respect to σ if an−j is the rightmost letter of τ involved in any occurrence of σ in
τ . If it is clear from the context what σ is, we simply talk about left and right tails of τ .

For example, with respect to the pattern 123, the permutation 286134759 has a left tail of length
3, and a right tails of length 2, since all occurrences of 123 belong within the segment 1347.

The following definition is borrowed from the theory of codes.

Given a permutation τ , its prefix (resp. suffix ) pattern of length k is the permutation of length k
order isomorphic to the prefix (resp. suffix) of τ of length k. In other words, the prefix (resp.
suffix) pattern of length k of τ is the unique permutation σ ∈ Sk such that τ has a left (resp.
right) tail of length 0 with respect to σ. In case the prefix and suffix patterns of length k of τ
coincide, we say that τ has a bifix pattern of length k.

In the case where σ occurs precisely once in τ , we show that µ(σ, τ) depends only on the lengths,
a and b, of the two tails of τ with respect to σ. More precisely, µ(σ, τ) is 1 if a = b ≤ 1, it is −1
if a = 0 and b = 1 or vice versa, and 0 otherwise (in which case τ has a tail of length at least 2).

Our main result deals with intervals [σ, τ ] where σ occurs at least twice in τ . This result implies
that, as in the case of one occurrence, if τ has a tail of length at least 2, then µ(σ, τ) = 0.
In the remaining cases, where the tails of τ have length at most 1, the main result gives a
recursive algorithm for computing µ(σ, τ), by producing, if possible, an element C in [σ, τ ], where
|C| < |τ | − 2, such that µ(σ, τ) = µ(σ, C). This element C, if it exists, must be a bifix pattern of
τ , and it must lie below the two elements covered by τ , but not below the element obtained by
deleting one letter from each end of τ . If no such element C exists (which is most often the case),
we have µ(σ, τ) = 0.

(This is joint work with Antonio Bernini and Einar Steingrimsson.)

Bounds for the number of permutations containing a low density of pat-
terns

Benjamin Fineman (University of California, Davis)

We seek to find a result similar to the Stanley-Wilf conjecture, but for permutations containing
a low density of a certain pattern. In our case, instead of an exponential bound, we find a bound
that is exponentially suppressed, and show that such a bound is indeed necessary.

Previous work in pattern avoidance has focused on finding bounds for the number of permutations
with no occurrences of a given pattern. Let Sn(γ) be the number of permutations in Sn that
avoid the pattern γ. For any pattern of length three, Sn(γ) = Cn, the n-th Catalan number.
In general, it is not the case that Sn(γ) only depends of the length of γ. Bóna showed that
Sn(1234) < Sn(1324), and these are the only other patterns with known formulae. The most
sweeping result concerning bounds for the number of pattern avoiding permutations is the Stanley-
Wilf conjecture, recently proved by Marcus and Tardos.

Theorem 1 (Stanley-Wilf conjecture, 1980). Let γ be any pattern. Then there exists a constant
c so that for all positive integers, we have Sn(γ) ≤ cn.

Let γ be a pattern of length f , and let χnδ (γ) be the number of permutations in Sn with fewer
than δfnf f -patterns. Our goal is to prove the following theorem:

Theorem 2. For every f , δ < 1/(2f), there are N , a, b, such that for n > N , we have

(an)n! ≤ χnδ (γ) ≤ (bn)n!

In particular, we have a = δf/2, and b =
(

e
(f−1)δ

)δ (
f−1
f

)1/f

+ t for any t > 0.
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Note that the bound we have is indeed non trivial. The term
(

e
(f−1)δ

)δ
approaches 1, as δ → 0,

and the second term
(
f−1
f

)1/f

is constant smaller than 1, depending only on the length of the

permutation γ. Furthermore, we can choose t small enough, so that the quantity(
e

(f − 1)δ

)δ (
f − 1

f

)1/f

+ t

is strictly smaller than 1, giving a nontrivial bound. In particular, for a pattern of length 3, the
theorem above, with choice of δ = .001 and t = .01 implies that for n sufficiently large, there are
at most

n!

{(
e

(2).001

).001(
2

3

)1/3

+ .01

}n
< n!(.9)n

patterns with fewer than .001n3 132-patterns.

Covering all n-permutations with (n+ 1)-permutations

Anant Godbole (East Tennessee State University)

Let Σn be the set of all permutations on [n] := {1, 2, . . . , n}. We denote by κn the smallest
cardinality of a subset A of Σn+1 that ”covers” Σn, in the sense that each π ∈ Σn may be found
as an order-isomorphic subsequence of some π′ in A. What are general upper bounds on κn? If
we randomly select νn elements of Σn+1, when does the probability that they cover Σn transition
from 0 to 1? Can we provide a fine-magnification analysis that provides the ”probability of cov-
erage” when νn is around the level given by the phase transition? In this talk we answer these
questions and raise others. This is joint work with Bill Kay (USC, Columbia), Taylor Allison (NC
State), and Katie Hawley (Harvey Mudd) – and partially answers a question raised by Robert
Brignall at last year’s PP Conference.

Pattern Avoidance in Ordered Partitions

Adam M. Goyt (Minnesota State University Moorhead)

Pattern avoidance in permutations, words, and set partitions have all been studied individually
and in conjunction with one another. In this talk we will meld the concepts of pattern avoidance
in set partitions with pattern avoidance in permutations in a slightly different way by considering
pattern avoidance in ordered set partitions. A partition of [n] = {1, 2, . . . , n} is a family of

nonempty disjoint sets B1, B2, . . . , Bk called blocks, that satisfy
⋃k
i=1Bi = [n]. In a set partition,

we list the blocks in order of increasing minimal elements and we list the elements in each block in
increasing order. In an ordered set partition we keep the increasing order on the elements within
a block and impose order on the blocks. For example, 36/27/1/45 is an ordered set partition, and
27/45/36/1 is a different ordered set partition, despite the fact that the underlying set partition
is the same.

We will say that an ordered partition σ = B1/B2/ . . . /Bk of [n] contains a copy of a permutation
p = p1p2 . . . pm ∈ Sm if there is a sequence of elements ai1ai2 . . . aim such that aij ∈ Bij for
1 ≤ j ≤ m, i1 < i2 < · · · < im, and ai1ai2 . . . aim is order isomorphic to p. We will give
enumerative results for sets of ordered partitions which avoid a permutation pattern of length
3. We will also discuss how ordered partitions are related to words, and give a simple bijection
showing that the number of words avoiding 123 is the same as the number of words avoiding 132.

This is joint work with Anant P. Godbole, Jennifer Herdan, and Lara K. Pudwell.
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Random permutations (and beyond)

Jennie Hansen (Heriot-Watt University)

In this talk we view uniform random permutations as part of a continuum of random mapping
models and we investigate the component structure of the random mappings in this continuum as
the mappings become (in some sense) more like permutations. Specifically, let [n] = {1, 2, ..., n},
let Mn denote the set of all mappings f : [n] → [n], and let Sn ⊂ Mn denote the set of all
permutations σ : [n]→ [n]. Any mapping f ∈ Mn can be represented by a directed graph G(f)
on vertices labelled 1, 2, ..., n where there is a directed edge i→ j in G(f) if and only if f(i) = j.
So if σ ∈ Sn, then G(σ) is the directed graph that represents the cycle structure of σ and every
vertex in G(f) has in-degree 1. More generally, if f ∈ Mn, then the connected components of
G(f) consists of directed cycles with directed trees attached to the cycles and vertices can have
in-degree greater than 1. If T is a random element ofMn, then G(T ) is a random directed graph
and we can investigate random variables that are determined by the structure of the digraph
G(T ). One such random variable is C1(T ), the size of the component in G(T ) which contains the
vertex labelled 1 (i.e. the size of a ‘typical’ component). It is well-known that is σn is a random
permutation on [n], then C1(σn) is uniformly distributed on [n]. In this talk we consider the
exact and asymptotic distributions of C1(Tn,a) where, for 0 ≤ a ≤ n, Tn,a is a random element
ofMn such that the vertices in the digraph G(Tn,a) have at least n− a vertices with in-degree 1
and at most a vertices with in-degree 2 and such that Tn,0 = σn. (We note that, in some sense,
the smaller the value of a relative to n, the ‘closer’ the random mapping Tn,a is to the random
permutation σn). The results obtained in this talk are based on urn scheme arguments and use
a calculus developed by the authors for random mappings with exchangeable in-degrees.

This is joint work with Jerzy Jaworski (Adam Mickiewicz University), who was supported by the
Marie Curie Intra-European Fellowship No. 236845 (RANDOMAPP) within the 7th European
Community Framework Programme.

PatternClass: A GAP Package for Permutation Pattern Classes

Ruth Hoffmann (University of St Andrews)

Many interesting pattern classes of permutations give rise to regular languages using the rank
encoding [AAR03]. This includes the classes generated by finite Token Passing Networks (TPNs)
as well as others. A remarkable result of [AAR03] is that in this situation the basis of the class
also has a regular language of encodings, and that the basis can be computed from the language
representing the whole class, and vice versa.

This talk will present the PatternClass GAP [GAP08] package, which includes: building pattern
classes from TPNs with and without a token constraint [ARL04]; computing the basis of a class
and vice versa; computing the class from the minimal avoidance set and the token constraint; and
inspecting whether a given class can be simulated by a TPN. Furthermore, there are methods
for rank encoding and decoding as well as some statistical inspections, including calculating the
spectrum of a class [ALR05], and printing the list of permutations of a specific length that are
contained within a class.

The talk will also discuss ongoing developments with the package including: computation of
plus- and minus-indecomposable sub-languages [AA05]; checking if a given permutation is simple
[Bri08] or if it belongs to a given class; calculating the direct and skew sum of classes [AAV10];
and implement one point deletion in simple permutations. Consequently from some of these ideas
it should be possible to compute chains of simple permutations [AD12] and separable classes
[AAV10] amongst other features.

We will demonstrate the package and its workings, as well as show insight to the ideas behind
the algorithms used.
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Expected Patterns in Permutations Avoiding 123

Cheyne Homberger (University of Florida)

In the set of all patterns in Sn, it is clear that each k-pattern occurs equally often. If we instead
restrict to the class of permutations avoiding a specific pattern, the situation quickly becomes
more interesting. Miklós Bóna recently proved that, surprisingly, if we consider the class of
permutations avoiding the pattern 132, all other non-monotone patterns of length 3 are equally
common. In this talk I examine the class Av(123), and give exact formula for the occurrences of
each length 3 pattern. While this class does not break down as nicely as Av(132), we find some
interesting similarities between the two and prove that the number of 231 patterns is the same in
each.

Stanley-Wilf limits of layered patterns

Vı́t Jeĺınek (Charles University)

We prove that the Stanley-Wilf limit of any layered permutation of length k is at most 4k2, which
is tight up to a multiplicative costant. For specific layered patterns, we are able to give more
precise upper bounds: notably, we prove that the Stanley-Wilf limit of the pattern 1324 is at
most 16.

These bounds follow from a general result showing that any permutation avoiding a pattern of
a special form can be obtained by merging two permutations, each of which avoids a smaller
pattern.

(This is joint work with Anders Claesson and Einar Steingrimsson)

Generating functions for permutations with no consecutive pattern matches
within the cycles

Miles Jones (University of California, San Diego)

Given a sequence σ = σ1 . . . σn of distinct integers, let red(σ) be the permutation found by replac-
ing the ith largest integer that appears in σ by i. For example, if σ = 2 7 5 4, then red(σ) = 1 4 3 2.
Let Υ be a set of permutations and let σ be a permutation in Sn with k cycles C1 . . . Ck. Then we
say that σ has a cycle Υ-match (c-Υ-match) if there exists an i such that Ci = (c0,i, . . . , cpi−1,i)
and an r such that red(cr,i . . . cr+j−1,i) ∈ Υ where we take indices of the form r + s modulo pi.
Let NCMn(Υ) be the set of all permutations σ ∈ Sn such that σ has no cycle Υ-match. We
have been able to get closed form generating functions of the following form for certain sets of
patterns Υ.

NCMΥ(t) =
∑
n≥0

tn

n!
|NCMn(Υ)|

Results: Let Γ be the set of all permutations σ = σ1σ2σ3σ4σ5 ∈ S5 such that

σ1 < σ2 > σ3 < σ4 > σ5.

Let Υ1 = Γ ∪ {1234} then

NCMΥ1
(t) =

2et
2/2et

4/12

2− 2t+ t2e−t
.

10



Let Υ2 = Γ ∪ {132, 1234} = {132, 1234, 35241, 45231, 34251} then

NCMΥ2(t) =
2etet

2/2

4− 2et + t2 + 2t
.

Let Υ3 = Γ ∪ {231, 1234} = {231, 1234, 13254, 14253, 15243} then

NCMΥ3(t) =
etet

2/2

−1− t+ 2et − tet
.

On permutation boxed mesh patterns

Sergey Kitaev (University of Strathclyde)

Mesh patterns are a generalization of vincular patterns. Mesh patterns were introduced by
Branden and Claesson to provide explicit expansions for certain permutation statistics as, possibly
infinite, linear combinations of (classical) permutation patterns.

We introduce the notion of a boxed mesh pattern and study avoidance of these patterns on
permutations. We prove that the celebrated former Stanley-Wilf conjecture is not true for all but
eleven boxed mesh patterns; for seven out of the eleven patterns the former conjecture is true,
while we do not know the answer for the remaining four (length-four) patterns. Moreover, we
show that an analogue of a well-known theorem of Erdos and Szekeres does not hold for boxed
mesh patterns of lengths larger than 2. Finally, we discuss enumeration of permutations avoiding
simultaneously two or more length-three boxed mesh patterns, where we meet generalized Catalan
numbers.

This is joint work with Sergey Avgustinovich and Alexander Valyuzhenich.

Random Superpatterns

Martha Liendo (East Tennessee State University)

The number of preferential arrangements or rankings of length a on an alphabet of size a are
given by the so-called ordered Bell numbers B(a) =

∑a
k=1 k!S(a, k), where S(a, k) are the Stirling

numbers of the second kind. A word of length n that contains all preferential arrangements of
length a is called a superpattern. It is known by joint work of Burstein, Hästö, and Mansour that
the minimum length n(a, a) of a superpattern satisfies n(a, a) ≤ a2 − 2a + 4 and it conjectured
that n(a, a) = a2 − 2a+ 4. In this talk we will focus on alphabets of size 2 and 3 and consider a
sequence X1, X2, . . . of independent and identically distributed variables, each taking the value j
with probability 1/a; a = 2, 3. The distribution of the waiting time W till the sequence becomes
a superpattern is obtained in closed form, as are the generating function and moments. For
example, it is shown for a = 3 that

p(n) = P (W = n) =
6

3n

n∑
m=7

[(n− 4)2 − 2]

(
n− 2

m− 2

)
.

This is joint work with Anant Godbole.

Permuted Basement Fillings, k-ary Trees, and Watermelons

Janine LoBue (University of California, San Diego)
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Symmetric functions are important objects of study which illustrate the connection between al-
gebra, representation theory, and combinatorics. In particular, the Schur functions are a notable
basis for the symmetric functions because they have a combinatorial interpretation as the generat-
ing function of column-strict tableaux, as well as representation-theoretic value as the irreducible
characters of the symmetric group. A q-t-analogue of the Schur functions are the symmetric
Macdonald polynomials, introduced by Macdonald in 1988, from which the Schur functions can
be obtained by setting q=t=0. Even more general are the nonsymmetric Macdonald polynomials,
of which the symmetric Macdonald polynomials are a special case. In 2007, Haglund, Haiman,
and Loehr gave a combinatorial interpretation to these nonsymmetric Macdonald polynomials,
namely fillings of certain diagrams with positive integer entries. Since then, Mason has studied the
polynomials Êγ that result from setting q=t=0 in these nonsymmetric Macdonald polynomials.
These can be considered a nonsymmetric refinement of the Schur functions, and are generated by
fillings of certain diagrams, indexed by weak compositions, with basement permutation equal to
the identity. When this basement is permuted to equal σ, we obtain the combinatorial objects of
interest, known as permuted basement fillings. These fillings generate the polynomials Êσγ , which
decompose the Schur functions.

Since the Schur functions are known to possess many nice properties, there is much interest in
which elements of that structure are maintained by the the Êσγ s. Much of the study of PBFs

has focused on cataloging the algebraic properties common to the Schur functions and Êσγ s, but
not much work has been done on enumerating the permuted basement fillings, or PBFs, which
generate the Êσγ s. One prominent question is whether there is an analogue of the hook formula
for PBFs. Unfortunately, since the requirements for being a PBF are much stricter than the
requirements for being a tableau, and some of these requirements are quite complicated, there
does not seem to be anything analogous to the hook formula in this general situation. When we
fix a simple enough shape, however, we can count the number of PBFs of that shape.

In this talk, I will discuss how one can count the number of PBFs of certain basic shapes, includ-
ing all rectangular shapes. We will find that these objects, which have come to be a topic of study
primarily because of their algebraic significance, also have connections to familiar combinatorial
objects including k-ary trees, lattice paths, and watermelons. Aside from enumerating these per-
muted basement fillings, we will begin to look at certain statistics to find q-analogues of these
results. For example, for a certain class of PBFs counted by k-ary trees, we will give a bijection
to lattice paths and see how a descent between entries in the top row of a PBF corresponds to a
certain behavior in the path. Further study of patterns and statistics within these PBFs seems
likely to yield interesting results, as there is much yet to be discovered about these objects.

Stack-sorting and preimages of mesh patterns

Hjalti Magnússon (Reykjavik University)

In the 1960s, Knuth showed that permutations avoiding the pattern 231 are the permutations
sortable with a single pass through a stack. In 1993, West [4] classified permutations sortable with
two passes through a stack, using barred patterns. Using mesh patterns, introduced by Brändén
and Claesson in [1], Claesson and Úlfarsson [2] implemented an algorithm which automates West’s
proof.

More precisely, given a classical pattern p and the stack-sort operator S, the algorithm generates
a set of mesh patterns M , such that for each permutation π, π avoids all m ∈ M if and only if
S(π) avoids p. Thus, by taking p = 231, West’s results can be reproduced.

The patterns output by the algorithm are no longer classical, and thus we cannot apply the
algorithm again to obtain a description of permutations sortable by three passes through a stack.
Recently, however, Úlfarsson, in [3], defined decorated patterns, and used them to give a description
of permutations sortable with three passes through a stack.

We extend the original algorithm, of Úlfarsson and Claesson, to handle mesh patterns with a
single shaded box. This allows us to fully automate Úlfarsson’s proof.
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For example, given the pattern p = , the algorithm gives us that the permutations that

avoid p after one pass through a stack are exactly the permutations that avoid the following 10
patterns:

This is joint work with Henning Úlfarsson.

Generalized Interval Embeddings

Brian Miceli (Trinity University)

Let N = {1, 2, 3, . . .} and let N∗ denote the set of all words over N. Let ε denote the empty word.
Given words u and v in N∗, we say that u is a factor of v if there are words w1 and w2 such that
v = w1uw2. In such a situation, we say u is a suffix of v if w2 = ε. Given u = u1u2 . . . u` ∈ N∗,
we define the norm of u to be Σu = u1 + u2 + · · · + u` and we define the length of u to be
|u| = `. We then allow x and t to be commuting variables and we define the weight of u to be
wt(u) = xΣut|u|.

Given any poset P = (N,≤p) and m,n ∈ N, we let IPm,∞ = {k ∈ N : m ≤p k} and IPm,n = {n ∈
N : m ≤p k ≤p n}. Given any words u = u1 . . . uk and w = w1w2 . . . w` in N∗, we say that u
embeds into w relative to P, written u ≤P w if there is a factor w′ = w′1w

′
2 . . . w

′
k of w such that

w′i ∈ IPui,∞ for every 1 ≤ i ≤ k. We define SP(u) to be the set of all words w that embed u such
that the only embedding of u into w occurs at the right end of w, and we set

SP(u, x, t) =
∑

w∈SP(u)

wt(w).

Given u, v ∈ N∗, u and v are P-Wilf equivalent, written as u ∼P v, if SP(u, x, t) = SP(v, x, t).
Kiteav, Liese, Remmel and Sagan [1] studied various properties of P-Wilf Equivalence where P is
the standard order on N and Langley, Liese, and Remmel [2] studied various properties of Pk-Wilf
equivalence where Pk = (N,≤k) and i ≤k j if and only if i ≡ j mod k and i < j.

We study a generalization P-Wilf equivalence based on intervals. That is, suppose that we are
given a poset P = (N,≤p) and a sequence ~U of intervals ({IPm1,n1

, IPm2,n2
, . . . , IPmk,nk

} where
either mi ≤p ni and mi, ni ∈ N or mi ∈ N and ni = ∞. Then we say that w has an interval-

embedding of ~U into w relative to P, denoted ~U ≤P w if there is a factor w′ = w′1w
′
2 . . . w

′
k of

w such that w′i ∈ IPmi,ni
for every 1 ≤ i ≤ `. We then define SP(~U) to be the set of all words

w = w1 . . . wn ∈ N∗ such that n ≥ k, there is an interval embedding of ~U into the suffix of w of
length k, and there is no interval embedding of ~U into w1 . . . wn−1. We set

SP(~U, x, t) =
∑

w∈SP(~U)

wt(w),

and given two sequences ~U and ~V of intervals of P, we say that ~U is P-Wilf equivalent to ~V ,
written as ~U ∼P ~V , if SP(~U, x, t) = SP(~V , x, t).

We show that under mild assumptions on P, SP(~U) is accepted by a finite automaton and, hence,

SP(~U, x, t) is a rational function. We compute SP(~U, x, t) for various special cases of ~U and use
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these computations to establish various non-trivial Wilf-equivalences in this setting.

[1] S. Kitaev, J. Liese, J. Remmel, and B.E. Sagan, Rationality of generalized containments
in words and Wilf equivalence, Electron. J. Combin., 16(2) (2009), R22

[2] T. Langley, J. Liese, and J. Remmel, Generating functions for Wilf equivalence under the
generalized factor order, J. Integer Seq., 14 (2011), 11.4.2

This is joint work with Jeffrey Liese and Jeffrey Remmel.

Permutations with exactly r occurrences of a length three pattern

Brian Nakamura (Rutgers University)

We consider the problem of enumerating permutations that contain exactly r occurrences of a
pattern. In previous work, Markus Fulmek gave an approach to find such generating functions
for length three patterns by translating permutations into generalized Dyck paths where certain
jumps are allowed. In particular, Fulmek was able to find the generating functions for the r = 1
and r = 2 cases of 312 as well as the r = 1 and r = 2 cases of 321. In this talk, we discuss Fulmek’s
approach and show some ways how it can be automated and extended for more occurrences.

Two-stacks sorting is polynomial

Adeline Pierrot (LIAFA, Université Paris Diderot)

In this article we give a polynomial algorithm to decide whether a given permutation σ is sortable
by 2-stacks in series. Given σ = σ1σ2 . . . σn and two stacks H and V , at each time step we can
take the next element of σ and push it onto H, or pop the topmost element of H and push it onto
V or pop the topmost element of V and write it in the output. The question is whether there
exist a sequence of operations leading to the identity in the output. This problem arises first in
Knuth’s book The Art of Computer Programming in 1973. Several subclasses or special cases
have been solved, either by restricting the operations, the input permutations or taking special
kind of stacks. The problem of deciding whether a given permutation σ is sortable by 2-stacks in
series has been conjectured to be both NP-complete and polynomial in different articles or books.

Our polynomial algorithm is based onto a previous article in Permutation Patterns 2011 where we
study 2-stacks pushall sortable permutations, that is permutations such that all elements are first
pushed onto the stacks H and V before the first element being output. Using the characterization
by a coloring of 2-stacks pushall sortable permutations, we can encode by a graph the possible
sortings of a given permutation. Indeed, given the right-to-left minima of the permutation, we
compute iteratively the graph, the leftmost right-to-left minima corresponding to the pushall
case.

This is joint work with Dominique Rossin.

Non-contiguous pattern avoidance in binary trees

Lara K. Pudwell (Valparaiso University)

In 2010, Rowland considered pattern avoidance in rooted ordered binary trees with the following
definition: binary tree T contains binary tree t if and only if T contains t as a contiguous
rooted ordered subgraph. In this talk, we modify Rowland’s definition such that binary tree T
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contains tree t if and only if there is a sequence of edge contractions of T that produce tree T*
which contains t as a rooted ordered subgraph. While Rowland’s tree patterns are analogous
to consecutive permutation patterns, this new definition is analogous to classical permutation
patterns. We completely classify Wilf-classes of trees avoiding a single non-contiguous binary
tree pattern and provide generating functions that enumerate pattern-avoiding trees according
to number of leaves. We also consider trees that avoid multiple tree patterns simultaneously and
provide bijective relationships between certain sets of pattern-avoiding trees and sets of pattern-
avoiding permutations.

This is joint work with Mike Dairyko, Samantha Tyner, and Casey Wynn.

Up-down ascent sequences and the q-Genocchi numbers

Jeffrey Remmel (University of California, San Diego)

The Genocchi number G2n for n ≥ 1 can be defined through its relation with the Bernoulli
numbers G2n = 2(22n − 1)Bn or through its exponential generating function

2t

et + 1
= t+

∑
n≥1

(−1)nG2n
t2n

(2n)!
.

The median Genocchi numbersH2n+1 are defined byH2n+1 =
∑
i≥0

G2n−2i

(
n

2i+ 1

)
. The Genocchi

numbers have been given combinatorial interpretations by Dumont [3], Dumont and Viennot [4],
Burstein et. al. [2], and others.

Zeng and Zhou [6] defined a q-analogue of the Genocchi numbers by defining a q-analogue of
the so-called Seidel triangle for the Genocchi numbers by defining polynomials (gi,j(q))i,j≥1 by
g1,1(q) = g2,1(q) = 1 and

g2i+1,j(q) = g2i+1,j−1(q) + qj−1g2i,j(q), for j = 1, 2, . . . , i+ 1, (1)

g2i,j(q) = g2i,j+1(q) + qj−1g2i−1,j(q), for j = i, i− 1, . . . , 1, (2)

where gi,j(q) = 0 if j < 0 or j > di/2e by convention. They defined the q-Genocchi number
G2n(q) and the median q-Genocchi number H2n−1(q) by

G2n(q) = g2n−1,n(q) and H2n−1(q) = qn−2g2n−1,1(q).

We give a new combinatorial interpretation of the elements of the q-analogue of the Seidel tri-
angle in terms of q-counting a up-down ascent sequences. Ascent sequences were introduced
by Bousquet-Mélou, Claesson, Dukes, and Kitaev in [1] to study the problem of enumerating
(2 + 2)-free posets. A sequence (a1, . . . , an) ∈ Nn is an ascent sequence of length n if and only
if it satisfies a1 = 0 and ai ∈ [0, 1 + asc(a1, . . . , ai−1)] for all 2 ≤ i ≤ n. Here, for any integer
sequence (a1, . . . , ai), the number of ascents of this sequence is

asc(a1, . . . , ai) = |{j : aj < aj+1}|.

For any n ≥ 1, we let Ascn denote the set of all ascent sequences of length n. Then we say
that a = a1 . . . an ∈ Ascn is an up-down ascent sequence if a1 < a2 > a3 < a4 > · · · . Let

UDA
(i)
n denote the set of elements a = a1 . . . an ∈ UDAn such that an = i. If n ≥ 1 and

a = a1 . . . an ∈ UDAn, then we define the weight of a, w(a), by

w(a) =

n−1∑
i=1

(ai − χ(i even)) (3)

where for any statement A, χ(A) = 1 is A is true and χ(A) = 0 is A is false. We prove the
following theorem.
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Theorem 3. For all 1 ≤ j ≤ di/2e,

g2i,j(q) =
∑

a=a1...a2i+1∈UDA(j−1)
2i+1

qw(a) and

g2i+1,j(q) =
∑

a=a1...a2i+2∈UDA(j)
2i+2

qw(a).

It follows for all n ≥ 1,

G2n(q) = g2n−1,n(q) =
∑

a=a1...a2n∈UDA2n
a2n=n

qw(a). (4)

and
H2n−1(q) = qn−2g2n−1,1(q) = qn−2

∑
a=a1...a2n∈UDA2n

a2n=1

qw(a). (5)

[1] M. Bousquet-Mélou, A. Claesson, M. Dukes, S. Kitaev: Unlabeled (2+2)-free posets, ascent
sequences and pattern avoiding permutations. J. Combin. Theory Ser. A, 117 Issue 7 (2010),
884–909.

[2] A. Burstein, M. Josuat-Vergés, and W. Stromquist, New Dumont permutations, Pure Math.
and Applications, 21 No. 2 (2010), 177–206.

[3] D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41
(1974) 305–318.

[4] D. Dumont and X. G. Viennot, A combinatorial interpretation of the Seidel generation of
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Asymptotics of push-all permutations

Dominique Rossin (LIX, CNRS, École Polytechnique)

A long-standing problem in permutation enumeration is to count the number of permutations
which can be sorted using two stacks in series. A subclass of these is presented in [2]: the push-
all-sortable permutations, those which can be sorted by a procedure in which at a given moment
all the elements are found in the stacks at once. In other words, all of the pushes onto the
first stack are accomplished before the first pop from the second stack is carried out. In that
paper, the authors present a polynomial algorithm for deciding whether a permutation is push-all
sortable; it is still unknown whether such a polynomial algorithm exists for the larger class. This
algorithm relies on a characterisation of the push-all-sortable permutations in terms of a certain
bicolouring of their elements, the two colours corresponding to which of the two stacks an element
inhabits after all the elements have been loaded into the stacks. In the present work, we make
use of this colouring to find the Wilf constant for the class of push-all-sortable permutations;
this is a fortiori a lower bound for the Wilf constant of the larger class of permutations sortable
by two stacks. More precisely, we find a bijection between certain admissible colourings, which
overcount our permutations in a linear fashion, and rooted ternary trees, which have a well-
known enumeration yielding the asymptotic formula (27/4)n . This is the same asymptotic as
that corresponding to a different subclass of the permutations sortable on two stacks, West’s
two-stack-sortable permutations.
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This is joint work with Adeline Pierrot and Julian West.

[1] D. Knuth, The Art of Computer Programming
[2] A. Pierrot and D. Rossin, On two-stack push-all permutations, PP 2011
[3] R.E. Tarjan, Sorting using networks of queues and stacks

Sorting with modified devices

Rebecca Smith (SUNY Brockport)

Knuth showed that a permutation π can be sorted by a stack (meaning that by applying push
and pop operations to the sequence of entries π(1), . . . , π(n) we can output the sequence 1, . . . , n)
if and only if π avoids the permutation 231, i.e., if and only if there do not exist three indices
1 ≤ i1 < i2 < i3 ≤ n such that π(i1), π(i2), π(i3) are in the same relative order as 231.

Many similarly structured devices such as pop-stacks, deques, restricted deques (of which stacks
are one type), etc. have also been considered. Some of the more robust machines are very diffi-
cult to devise an optimal algorithm for (particularly when more than one machine is acting on
the permutation). Because of this, the weaker machines are sometimes more practical to study.
We continue this tradition by looking at combinations of some of the traditional restrictions on
sorting devices.

Extending from bijections between marked occurrences of patterns to all
occurrences of patterns

Mark Tiefenbruck (University of California, San Diego)

Consider two problems presented recently at Permutation Patterns, the first posed by Claesson
and Linusson, the second posed by Jones and Remmel.

First, in a permutation σ, we define the pattern p such that an occurrence is a subsequence
σiσi+1σj where σi = σj + 1 and σi < σi+1. A matching is a partition of the set {1, 2, . . . , 2n}
into pairs (i, j) such that i < j. In a matching, the pairs (i, l) and (j, k) form a nesting if i < j
and k < l. In particular, we define a left-nesting to be a nesting where j = i+ 1, and we define a
right-nesting to be a nesting where l = k+1. Claesson and Linusson conjectured that the number
of left-nestings in matchings that have no right-nestings has the same distribution as the number
of occurrences of p in the permutations in Sn.

Second, let w = (w1w2 · · ·wk) be a cycle in a permutation. A cycle-match of the pattern π is
a subsequence of consecutive elements of the cycle, where w1 follows wk, that have the same
relative order as the entries in π. Jones and Remmel showed that if π begins with 1, then the
number of cycle-matches of π in the cycles of the permutations in Sn has the same distribution
as the number of consecutive occurrences of π in the permutations in Sn. They conjectured this
was true for any π that cannot cover a cycle with overlapping π-cycle-matches. For example, in
the cycle (31425), 3142 and 4253 are 3142-cycle-matches that cover the cycle, whereas no cycle
can be covered by 2143-cycle-matches.

We will present a general technique for showing that two sets of patterns have the same joint
distribution. This technique reduces the problem to finding a bijection that preserves a given
number of “marked” patterns, which is generally easier. We may augment this technique with
the Garsia-Milne involution principle to obtain a bijection that preserves all of the patterns. We
will use this technique to solve the above problems and present other interesting results in the
study of permutation patterns.

This is joint work with Jeffrey Remmel.
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Automated discovery of permutation patterns

Henning Ulfarsson (Reykjavik University)

A substantial amount of research has been devoted to showing that many properties of permu-
tations, as well as objects related to them, are captured by permutation patterns. Examples
include properties such as sorting through various devices and smoothness properties of Schubert
varieties. Often one needs generalized notions of patterns like barred, vincular and mesh patterns.
We have developed an algorithm that takes as input a finite set of permutations and outputs the
minimal patterns that the set avoids. Here minimality means that any other pattern avoided by
the set of permutations is a consequence of the outputted patterns. This ensures that we get
a concise description. The algorithm can for instance discover the description of stack-sortable
permutations in terms of avoidance of 231, West-2-stack-sortable permutations in terms of one
classical and one barred pattern, forest-like permutations (corresponding to factorial Schubert
varieties) in terms of one classical pattern and one vincular pattern. Since the algorithm only
takes finite sets of permutations as input, it can never prove that the description it finds is the
correct one. One example of a new conjecture the algorithm has generated is that permutations
whose Young tableaux (under the RSK-correspondence) are hook-shaped are the permutations
avoiding four patterns:

We will discuss the implementation of the algorithm (in Sage (www.sagemath.org)).

This is joint work with Anders Claesson.

Lehmer code transforms and Mahonian statistics on permutations

Vincent Vajnovszki (Université de Bourgogne)

In 2000 Babson and Steingŕımsson introduced the notion of vincular patterns in permutations.
They shown that essentially all well-known Mahonian permutation statistics can be written as
combinations of such patterns. Also, they proved and conjectured that other combinations of
vincular patterns are still Mahonian. These conjectures were proved later: by Foata and Zeilberger
in 2001, and by Foata and Randrianarivony in 2006.

In this paper we give an alternative proof of some of these results. Our approach is based on
permutation codes which, like Lehmer’s code, map bijectively permutations onto subexcedant
sequences. More precisely, we give several code transforms (i.e., bijections between subexcedant
sequences) which when applied to Lehmer’s code yield new permutation codes which count oc-
currences of some vincular patterns.

Small permutation classes

Vincent Vatter (University of Florida)

Much of the early work in permutation patterns was motivated by the Stanley-Wilf Conjecture,
which stated that every nontrivial permutation class has a finite (upper) growth rate,

gr(C) = lim sup
n→∞

n
√
|Cn|,
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where Cn denotes the set of permutations of length n in the permutation class C. While Marcus
and Tardos elegantly resolved this conjecture (in the affirmative) in 2004, we still know very little
about these numbers. In particular, which numbers can occur as growth rates of permutation
classes?

At Permutation Patterns 2007, I presented the following result, extending earlier work of Kaiser
and Klazar [4].

Theorem 4 (Vatter [5]). Let κ denote the unique positive root of x3 − 2x2 − 1, approximately
2.20557. If the upper growth rate of C is less than κ then C has a proper growth rate which is
either 0, 2, a root of one of the four polynomials

(P1) x3 − x2 − x− 3,

(P2) x4 − x3 − x2 − 2x− 3,

(P3) x4 − x3 − x2 − 3x− 1,

(P4) x5 − x4 − x3 − 2x2 − 3x− 1,

or a root of one of the three families of polynomials

(F1) xk+1 − 2xk + 1,

(F2) (x3 − 2x2 − 1)xk+` + x` + 1, or

(F3) (x3 − 2x2 − 1)xk + 1

for integers k ≥ 1 and ` ≥ 0.

The number κ is the threshold of a sharp phase transition: there are only countably many permu-
tation classes of growth rate less than κ, but uncountably many of growth rate κ. Furthermore,
it is the first growth rate at which permutation classes may contain infinite antichains, which in
turn is the cause of much more complicated structure. For this reason we single out classes of
growth rate less than κ as small.

While Theorem 4 characterizes the asymptotics of small permutation classes, it does not give
their fine structure, and in particular it says nothing about their exact enumeration. In this talk
I will discuss recent joint work with Michael Albert and Nik Ruškuc, in which we were able to
complete the structural characterization of small classes, leading to the following result.

Theorem 5 (Albert, Ruškuc, and Vatter [3]). All small permutation classes have rational gen-
erating functions.

The techniques involved in the proof of Theorem 5 involve the substitution decomposition, orig-
inally studied by Albert and Atkinson [1], and the geometric grid classes of Albert, Atkinson,
Bouvel, Ruškuc, and Vatter [2].

[1] Michael H. Albert and M. D. Atkinson, Simple permutations and pattern restricted permuta-
tions, Discrete Math. 300 (2005), no. 1-3, 1–15.

[2] Michael H. Albert, M. D. Atkinson, Mathilde Bouvel, Nik Ruškuc, and Vincent Vatter, Geo-
metric grid classes of permutations, Trans. Amer. Math. Soc., to appear.

[3] Michael H. Albert, Nik Ruškuc, and Vincent Vatter, Inflations of geometric grid classes of
permutations, arXiv:1202.1833v1 [math.CO].

[4] Tomáš Kaiser and Martin Klazar, On growth rates of closed permutation classes, Electron. J.
Combin. 9 (2003), no. 2, Research paper 10, 20 pp.

[5] Vincent Vatter, Small permutation classes, Proc. Lond. Math. Soc. (3) 103 (2011), 879–921.
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Bruhat graphs and pattern avoidance

Alexander Woo (University of Idaho)

Associated to each permutation (or, more generally, any element in a Coxeter group) is a graph
called the Bruhat graph. We show that the permutations whose Bruhat graphs can be drawn
on the plane or on the torus can be characterized by avoiding specific long lists of patterns.
My motivation for this question comes from the observation that some properties of Schubert
varieties are characterized by avoiding a long list of patterns but none are known so far to require
an infinite list of ordinary patterns. Since these properties depend only on the Bruhat graph, the
question arises as to whether there is a purely combinatorial explanation for finiteness.

This is joint work with Christopher Conklin with some further contributions from Michael El-
dredge.
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