Partially Marked Pattern Families

Mark Tiefenbruck

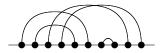
June 14, 2012

Mark Tiefenbruck Partially Marked Pattern Families

A ►

Matchings

• This is a matching:



P

æ

Matchings

• This is a matching:



• It has nestings.

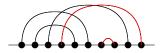
Matchings

• This is a matching:

• It has nestings.

Matchings

• This is a matching:



• It has nestings.

Matchings



- It has nestings.
- Some are right-nestings.

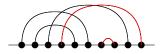
Matchings

- It has nestings.
- Some are right-nestings.
- Some are left-nestings.

Matchings

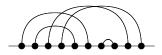
- It has nestings.
- Some are right-nestings.
- Some are left-nestings.
- Some are both.

Matchings



- It has nestings.
- Some are right-nestings.
- Some are left-nestings.
- Some are both.
- Some are neither.

Matchings



- It has nestings.
- Some are right-nestings.
- Some are left-nestings.
- Some are both.
- Some are neither.
- Let NRN_n be the set of matchings with n arcs and no right-nestings.

An Unusual Pattern

• $\sigma_i, \sigma_{i+1}, \sigma_i + 1$ form a *p*-pattern if $\sigma_i > \sigma_{i+1}$ and $\sigma_i + 1$ is to the right of σ_i .

< E

A D

An Unusual Pattern

- $\sigma_i, \sigma_{i+1}, \sigma_i + 1$ form a *p*-pattern if $\sigma_i > \sigma_{i+1}$ and $\sigma_i + 1$ is to the right of σ_i .
- For example, in 426351, 425 is a *p*-pattern:

An Unusual Pattern

- σ_i, σ_{i+1}, σ_i + 1 form a *p*-pattern if σ_i > σ_{i+1} and σ_i + 1 is to the right of σ_i.
- For example, in 426351, 425 is a *p*-pattern:

• Claesson and Linusson conjectured that left-nestings in NRN_n and *p*-patterns in S_n have the same distribution.

First Try

• Build permutations by repeatedly inserting new largest number:

1

< 17 >

글 🖌 🖌 글 🕨

First Try

• Build permutations by repeatedly inserting new largest number:

21

Image: Image:

æ

• = • • = •

First Try

• Build permutations by repeatedly inserting new largest number:

2<mark>3</mark>1

Image: Image:

æ

• = • • = •

First Try

• Build permutations by repeatedly inserting new largest number:

4231

æ

(日) (同) (三) (三)

First Try

• Build permutations by repeatedly inserting new largest number:

423<mark>5</mark>1

æ

(日) (同) (三) (三)

First Try

• Build permutations by repeatedly inserting new largest number:

42<mark>6</mark>351

æ

(日) (同) (三) (三)

First Try

• Build permutations by repeatedly inserting new largest number:

426351

• When do we create a new *p*-pattern?

< A >

- ₹ 🖬 🕨

- ₹ 🖬 🕨

First Try

• Build permutations by repeatedly inserting new largest number:

4263<mark>7</mark>51

• When do we create a new *p*-pattern?

< A >

- ₹ 🖬 🕨

- ₹ 🖬 🕨

First Try

• Build permutations by repeatedly inserting new largest number:

426351

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?

A D

First Try

• Build permutations by repeatedly inserting new largest number:

4<mark>7</mark>26351

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?

A D

First Try

• Build permutations by repeatedly inserting new largest number:

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:

First Try

• Build permutations by repeatedly inserting new largest number:

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:

First Try

• Build permutations by repeatedly inserting new largest number:

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:

First Try

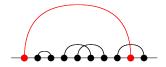
• Build permutations by repeatedly inserting new largest number:

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:

First Try

• Build permutations by repeatedly inserting new largest number:

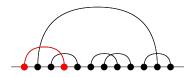
- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:



First Try

• Build permutations by repeatedly inserting new largest number:

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:

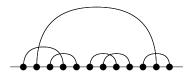


First Try

• Build permutations by repeatedly inserting new largest number:

426351

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:



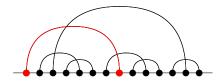
• When do we create a new left-nesting?

First Try

• Build permutations by repeatedly inserting new largest number:

426351

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:

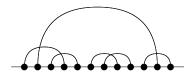


• When do we create a new left-nesting?

First Try

• Build permutations by repeatedly inserting new largest number:

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:

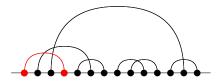


- When do we create a new left-nesting?
- When do we break an existing left-nesting?

First Try

• Build permutations by repeatedly inserting new largest number:

- When do we create a new *p*-pattern?
- When do we break an existing *p*-pattern?
- Build matchings by repeatedly inserting new first arc:



- When do we create a new left-nesting?
- When do we break an existing left-nesting?

What Goes Wrong

• Consider the permutation 25314:

Mark Tiefenbruck Partially Marked Pattern Families

▲ 同 ▶ → 三 ▶

What Goes Wrong

• Consider the permutation 25314:

< 🗇 > < 🖃 >

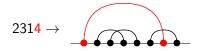
What Goes Wrong

• Consider the permutation 25314:

- 4 同 6 4 日 6 4 日 6

What Goes Wrong

• Consider the permutation 25314:



< E

What Goes Wrong

• Consider the permutation 25314:

What Goes Wrong

• Consider the permutation 25314:



• 314 is a *p*-pattern, but the corresponding left-nesting is broken.

• Mark a subset of the *p*-patterns. Make sure the corresponding nestings are not broken.

- ₹ 🖬 🕨

< 17 ▶

э

- Mark a subset of the *p*-patterns. Make sure the corresponding nestings are not broken.
- For example, use $\sigma = 25314$:

- **→** → **→**

- Mark a subset of the *p*-patterns. Make sure the corresponding nestings are not broken.
- For example, use $\sigma = 25314$:

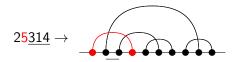
- **→** → **→**

- Mark a subset of the *p*-patterns. Make sure the corresponding nestings are not broken.
- For example, use $\sigma = 25314$:

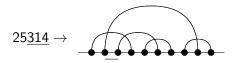
- **→** → **→**

- Mark a subset of the *p*-patterns. Make sure the corresponding nestings are not broken.
- For example, use $\sigma = 25314$:

- Mark a subset of the *p*-patterns. Make sure the corresponding nestings are not broken.
- For example, use $\sigma = 25314$:



- Mark a subset of the *p*-patterns. Make sure the corresponding nestings are not broken.
- For example, use $\sigma = 25314$:



• The image of 23514 still has a left-nesting, so we're not done.

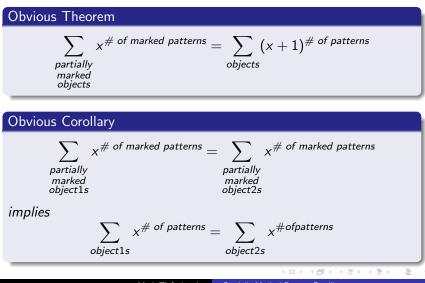
Actually....

Obvious Theorem $\sum_{\substack{\text{partially}\\marked\\objects}} x^{\# \text{ of marked patterns}} = \sum_{\substack{\text{objects}}} (x+1)^{\# \text{ of patterns}}$

æ

< ロ > < 同 > < 三 > < 三 > 、

Actually....



Mark Tiefenbruck Partially Marked Pattern Families

Jones and Remmel's Results

In cycle w = (w₁w₂···w_k), a τ-cycle-match is a τ-match (*i.e.* consecutive occurrence) that is allowed to wrap around the end.

Jones and Remmel's Results

- In cycle w = (w₁w₂···w_k), a τ-cycle-match is a τ-match (*i.e.* consecutive occurrence) that is allowed to wrap around the end.
- For example, in (27498), 982 is a 321-cycle-match.

Jones and Remmel's Results

- In cycle w = (w₁w₂···w_k), a τ-cycle-match is a τ-match (*i.e.* consecutive occurrence) that is allowed to wrap around the end.
- For example, in (27498), 982 is a 321-cycle-match.
- Let $\tau_{\rm cyc}(\sigma)$ be the number of τ -cycle-matches in σ 's cycles.

Jones and Remmel's Results

- In cycle w = (w₁w₂···w_k), a τ-cycle-match is a τ-match (*i.e.* consecutive occurrence) that is allowed to wrap around the end.
- For example, in (27498), 982 is a 321-cycle-match.
- Let $\tau_{\rm cyc}(\sigma)$ be the number of τ -cycle-matches in σ 's cycles.
- If τ begins with 1, Jones and Remmel showed that $|S_n(\tau_{\text{cyc}})| = |S_n(\tau \text{-mch})|.$

Jones's Conjecture

• Some τ can cover a cycle in overlapping cycle-matches.

< ∃ >

Jones's Conjecture

- $\bullet\,$ Some $\tau\,$ can cover a cycle in overlapping cycle-matches.
- For example, $(\underline{14253})$ is covered by 3142-cycle-matches.

Jones's Conjecture

- Some τ can cover a cycle in overlapping cycle-matches.
- For example, $(\underline{14253})$ is covered by 3142-cycle-matches.
- Jones conjectured that if τ cannot cover a cycle, then $|S_n(\tau_{\text{cyc}})| = |S_n(\tau \text{-mch})|.$

Jones and Remmel's Proof

• Suppose $\tau_1 = 1$, and write σ in cycle notation.

э

- (E

- Suppose $\tau_1 = 1$, and write σ in cycle notation.
- For example, let $\sigma = (135)(27498)(6)$.

- Suppose $\tau_1 = 1$, and write σ in cycle notation.
- For example, let $\sigma = (135)(27498)(6)$.
- Sort the cycles in reverse order by smallest element:

 $\sigma = (6)(27498)(135)$

- Suppose $\tau_1 = 1$, and write σ in cycle notation.
- For example, let $\sigma = (135)(27498)(6)$.
- Sort the cycles in reverse order by smallest element:

$$\sigma = (6)(27498)(135)$$

• Drop the parentheses:

 $\sigma \rightarrow \mathbf{627498135}$

- Suppose $\tau_1 = 1$, and write σ in cycle notation.
- For example, let $\sigma = (135)(27498)(6)$.
- Sort the cycles in reverse order by smallest element:

$$\sigma = (6)(27498)(135)$$

• Drop the parentheses:

$$\sigma \rightarrow \mathbf{627498135}$$

• This actually proves $\tau_{\rm cyc}$ and $\tau\text{-mch}$ have the same distribution.

What Goes Wrong

• Let
$$\tau = 2143$$
 and $\sigma = (1432)$.

æ

<ロト <部ト < 注ト < 注ト

What Goes Wrong

• Let
$$\tau = 2143$$
 and $\sigma = (1432)$.

• $\sigma \rightarrow 1432$

Mark Tiefenbruck Partially Marked Pattern Families

æ

<ロト <部ト < 注ト < 注ト

What Goes Wrong

- Let $\tau = 2143$ and $\sigma = (1432)$.
- $\sigma \rightarrow 1432$
- σ has a $\tau\text{-cycle-match},$ but its image does not have a $\tau\text{-match}.$

/₽ ► < ∃ ►

What Goes Wrong

- Let $\tau = 2143$ and $\sigma = (1432)$.
- $\sigma \rightarrow 1432$
- σ has a $\tau\text{-cycle-match},$ but its image does not have a $\tau\text{-match}.$

• For
$$\sigma = (143)(2), \ \sigma
ightarrow 2143.$$

/₽ ► < ∃ ►

New Bijection

• Mark a subset of the cycle-matches and require the bijection to preserve those.

- **→** → **→**

э

- Mark a subset of the cycle-matches and require the bijection to preserve those.
- Example: $\sigma = (57)(\underline{1649823})$

< ∃ >

< 17 ▶

- Mark a subset of the cycle-matches and require the bijection to preserve those.
- Example: $\sigma = (57)(\underline{16498}2\underline{3})$
- Rotate the cycles until no marked matches wrap around:

$$\sigma = (57)(\underline{31\overline{64}98}2)$$

- Mark a subset of the cycle-matches and require the bijection to preserve those.
- Example: $\sigma = (57)(\underline{1649823})$
- Rotate the cycles until no marked matches wrap around:

$$\sigma = (57)(\underline{31\overline{64}98}2)$$

• Drop the parentheses:

$$\sigma \rightarrow 57 \underline{31} \overline{64} \overline{98} 2$$

- Mark a subset of the cycle-matches and require the bijection to preserve those.
- Example: $\sigma = (57)(\underline{16498}2\underline{3})$
- Rotate the cycles until no marked matches wrap around:

$$\sigma = (57)(\underline{31\overline{64}98}2)$$

• Drop the parentheses:

$$\sigma \rightarrow 57\underline{31}\overline{64}\overline{98}2$$

Done!

A New Pattern

• Let
$$S_m^{st} = \{ \tau \in S_m : \tau_s = m - 1, \tau_t = m \}.$$

イロン イロン イヨン イヨン

æ

A New Pattern

- Let $S_m^{st} = \{ \tau \in S_m : \tau_s = m 1, \tau_t = m \}.$
- σ_i is a P_m^{st} -pattern if it is the m-1 in at least one S_m^{st} -pattern.

A New Pattern

- Let $S_m^{st} = \{ \tau \in S_m : \tau_s = m 1, \tau_t = m \}.$
- σ_i is a P_m^{st} -pattern if it is the m-1 in at least one S_m^{st} -pattern.
- *s*, *t* are compatible if $t \in \{1, s 2, s 1, s + 1, s + 2, m\}$.

A New Pattern

- Let $S_m^{st} = \{ \tau \in S_m : \tau_s = m 1, \tau_t = m \}.$
- σ_i is a P_m^{st} -pattern if it is the m-1 in at least one S_m^{st} -pattern.
- *s*, *t* are compatible if $t \in \{1, s 2, s 1, s + 1, s + 2, m\}$.

Theorem

If s_1 , t_1 and s_2 , t_2 are compatible, then $P_m^{s_1t_1}$ and $P_m^{s_2t_2}$ have the same distribution.

A New Pattern

- Let $S_m^{st} = \{ \tau \in S_m : \tau_s = m 1, \tau_t = m \}.$
- σ_i is a P_m^{st} -pattern if it is the m-1 in at least one S_m^{st} -pattern.
- *s*, *t* are compatible if $t \in \{1, s 2, s 1, s + 1, s + 2, m\}$.

Theorem

If s_1 , t_1 and s_2 , t_2 are compatible, then $P_m^{s_1t_1}$ and $P_m^{s_2t_2}$ have the same distribution.

• For example, $|S_n(1234, 2134)| = |S_n(3412, 3421)|$, but the theorem tells us more.

The End

Thanks for listening!

Mark Tiefenbruck Partially Marked Pattern Families

æ

<ロト <部ト < 注ト < 注ト