Stanley–Wilf Limits of Layered Patterns Permutation Patterns 2012

Anders Claesson, Vít Jelínek, Einar Steingrímsson

Stanley–Wilf Limits

Definition

 $Av(\pi)$ is the set of π -avoiding permutations.

 $Av_n(\pi)$ is the set of π -avoiding permutations of size n.

The Stanley–Wilf limit of π , denoted by $L(\pi)$, is defined as

$$L(\pi) := \lim_{n \to \infty} \sqrt[n]{|\mathsf{Av}_n(\pi)|}.$$

Stanley-Wilf Limits

Definition

 $Av(\pi)$ is the set of π -avoiding permutations.

 $Av_n(\pi)$ is the set of π -avoiding permutations of size n.

The Stanley–Wilf limit of π , denoted by $L(\pi)$, is defined as

$$L(\pi) := \lim_{n \to \infty} \sqrt[n]{|\mathsf{Av}_n(\pi)|}.$$

Direct Sums

Definition

Given two permutations $\pi = \pi_1, \dots, \pi_k$ and $\sigma = \sigma_1, \dots, \sigma_m$, define the direct sum $\pi \oplus \sigma$ as

$$\pi \oplus \sigma = \pi_1, \ldots, \pi_k, \sigma_1 + k, \ldots, \sigma_m + k.$$

Layered Permutations

Definition

A layered permutation is a direct sum of decreasing permutations.

Example $\pi=321465987=321\oplus 1\oplus 21\oplus 321$ is a layered permutation

For a general permutation π of size k:

$$\Omega(k^2) \le L(\pi) \le 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{O(k)}$$

For specific patterns:

- L(123) = L(132) = 4
- $L(123\cdots k) = (k-1)^2$
- L(1342) = L(2413) =
- $9.47 \le L(1324) \le 288$

For a general permutation π of size k:

•
$$\Omega(k^2) \leq L(\pi) \leq 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{O(k)}$$

For specific patterns:

- L(123) = L(132) = 4
- $L(123\cdots k) = (k-1)^2$
- I(1342) = I(2413) = I
- $9.47 \le L(1324) \le 288$

For a general permutation π of size k:

•
$$\Omega(k^2) \leq L(\pi) \leq 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{O(k)}$$

For specific patterns:

•
$$L(123) = L(132) = 4$$

•
$$L(123\cdots k) = (k-1)^2$$

•
$$L(1342) = L(2413) = 8$$

•
$$9.47 \le L(1324) \le 288$$

For a general permutation π of size k:

•
$$\Omega(k^2) \leq L(\pi) \leq 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{O(k)}$$

For specific patterns:

•
$$L(123) = L(132) = 4$$

•
$$L(123\cdots k) = (k-1)^2$$

$$L(1342) = L(2413) = 8$$

•
$$9.47 \le L(1324) \le 288$$

For a general permutation π of size k:

•
$$\Omega(k^2) \leq L(\pi) \leq 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{O(k)}$$

For specific patterns:

•
$$L(123) = L(132) = 4$$

•
$$L(123\cdots k) = (k-1)^2$$

•
$$L(1342) = L(2413) = 8$$

•
$$9.47 \le L(1324) \le 288$$

For a general permutation π of size k:

•
$$\Omega(k^2) \leq L(\pi) \leq 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{O(k)}$$

For specific patterns:

- L(123) = L(132) = 4
- $L(123\cdots k) = (k-1)^2$
- L(1342) = L(2413) = 8
- $9.47 \le L(1324) \le 288$

For a general permutation π of size k:

•
$$\Omega(k^2) \leq L(\pi) \leq 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{O(k)}$$

For specific patterns:

- L(123) = L(132) = 4
- $L(123\cdots k) = (k-1)^2$
- L(1342) = L(2413) = 8
- $9.47 \le L(1324) \le 288$

For a general permutation π of size k:

•
$$\Omega(k^2) \leq L(\pi) \leq 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{9(k)} 4k^2$$

For specific patterns:

- L(123) = L(132) = 4
- $L(123\cdots k) = (k-1)^2$
- L(1342) = L(2413) = 8
- $9.47 \le L(1324) \le 288$

For a general permutation π of size k:

•
$$\Omega(k^2) \leq L(\pi) \leq 2^{O(k \log k)}$$

For layered π :

•
$$(k-1)^2 \le L(\pi) \le 2^{9(k)} 4k^2$$

For specific patterns:

- L(123) = L(132) = 4
- $L(123\cdots k) = (k-1)^2$
- L(1342) = L(2413) = 8
- $9.47 \le L(1324) \le 28816$

Merging

Definition

Permutation π is a merge of permutations σ and τ if the symbols of π can be colored red and blue, so that the red symbols are order-isomorphic to σ and the blue ones to τ .

Example

3175624 is a merge of 231 and 1342.

Definition

For two sets P and Q of permutations, let MERGE[P, Q] be the set of permutations obtained by merging a $\sigma \in P$ with a $\tau \in Q$.

Lemma (Albert et al., Bóna)

If $Av(\pi) \subseteq \text{MERGE}[Av(\sigma), Av(\tau)]$, then

$$\sqrt{L(\pi)} \le \sqrt{L(\sigma)} + \sqrt{L(\tau)}$$

Merging

Definition

Permutation π is a merge of permutations σ and τ if the symbols of π can be colored red and blue, so that the red symbols are order-isomorphic to σ and the blue ones to τ .

Example

3175624 is a merge of 231 and 1342.

Definition

For two sets P and Q of permutations, let MERGE[P, Q] be the set of permutations obtained by merging a $\sigma \in P$ with a $\tau \in Q$.

Lemma (Albert et al., Bóna)

If $Av(\pi) \subseteq \text{MERGE}[Av(\sigma), Av(\tau)]$, then

$$\sqrt{L(\pi)} \le \sqrt{L(\sigma)} + \sqrt{L(\tau)}$$

Merging

Definition

Permutation π is a merge of permutations σ and τ if the symbols of π can be colored red and blue, so that the red symbols are order-isomorphic to σ and the blue ones to τ .

Example

3175624 is a merge of 231 and 1342.

Definition

For two sets P and Q of permutations, let MERGE[P, Q] be the set of permutations obtained by merging a $\sigma \in P$ with a $\tau \in Q$.

Lemma (Albert et al., Bóna)

If $Av(\pi) \subseteq \text{MERGE}[Av(\sigma), Av(\tau)]$, then

$$\sqrt{L(\pi)} \le \sqrt{L(\sigma)} + \sqrt{L(\tau)}$$

The Key Lemma

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq MERGE[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

Remark

The special case $\beta=1$ has been proved by Bóna, who actually shows $\sqrt{L(\alpha\oplus 1\oplus \gamma)}=\sqrt{L(\alpha\oplus 1)}+\sqrt{L(1\oplus \gamma)}$.

Example

Taking $\alpha=1$, $\beta=21$, and $\gamma=1$ gives

$$\sqrt{L(1324)} \le \sqrt{L(132)} + \sqrt{L(213)} = 4$$

so $L(1324) \le 16$.

The Key Lemma

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq MERGE[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

Remark

The special case $\beta=1$ has been proved by Bóna, who actually shows $\sqrt{L(\alpha\oplus 1\oplus \gamma)}=\sqrt{L(\alpha\oplus 1)}+\sqrt{L(1\oplus \gamma)}$.

Example

Taking $\alpha=1$, $\beta=21$, and $\gamma=1$ gives

$$\sqrt{L(1324)} \le \sqrt{L(132)} + \sqrt{L(213)} = 4$$

so $L(1324) \le 16$.

The Key Lemma

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq MERGE[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

Remark

The special case $\beta=1$ has been proved by Bóna, who actually shows $\sqrt{L(\alpha\oplus 1\oplus \gamma)}=\sqrt{L(\alpha\oplus 1)}+\sqrt{L(1\oplus \gamma)}$.

Example

Taking $\alpha=1$, $\beta=21$, and $\gamma=1$ gives

$$\sqrt{L(1324)} \le \sqrt{L(132)} + \sqrt{L(213)} = 4,$$

so $L(1324) \leq 16$.

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq Merge[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

Example

Define
$$\lambda_k := k(k-1)\cdots 1$$
. Consider $\pi = \lambda_3 \oplus \lambda_1 \oplus \lambda_7 \oplus \lambda_6 \oplus \lambda_2$.

$$\sqrt{L(\pi)} \leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7 \oplus \lambda_6 \oplus \lambda_2)}$$

$$\leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7)} + \sqrt{L(\lambda_7 \oplus \lambda_6 \oplus \lambda_2)}$$

$$\leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7)} + \sqrt{L(\lambda_7 \oplus \lambda_6)} + \sqrt{L(\lambda_6 \oplus \lambda_2)}$$

$$= 3 + 7 + 12 + 7 = 29$$

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq Merge[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

Example

Define
$$\lambda_k := k(k-1)\cdots 1$$
. Consider $\pi = \lambda_3 \oplus \lambda_1 \oplus \lambda_7 \oplus \lambda_6 \oplus \lambda_2$.

$$\sqrt{L(\pi)} \leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7 \oplus \lambda_6 \oplus \lambda_2)}
\leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7)} + \sqrt{L(\lambda_7 \oplus \lambda_6 \oplus \lambda_2)}$$

$$\leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7)} + \sqrt{L(\lambda_7 \oplus \lambda_6)} + \sqrt{L(\lambda_6 \oplus \lambda_2)}$$

$$= 3 + 7 + 12 + 7 = 29$$

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq MERGE[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore $\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$.

Example

Define $\lambda_k := k(k-1)\cdots 1$. Consider $\pi = \lambda_3 \oplus \lambda_1 \oplus \lambda_7 \oplus \lambda_6 \oplus \lambda_2$.

$$\begin{split} \sqrt{L(\pi)} & \leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7 \oplus \lambda_6 \oplus \lambda_2)} \\ & \leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7)} + \sqrt{L(\lambda_7 \oplus \lambda_6 \oplus \lambda_2)} \\ & \leq \sqrt{L(\lambda_3 \oplus \lambda_1)} + \sqrt{L(\lambda_1 \oplus \lambda_7)} + \sqrt{L(\lambda_7 \oplus \lambda_6)} + \sqrt{L(\lambda_6 \oplus \lambda_2)} \\ & = 3 + 7 + 12 + 7 = 29 \end{split}$$

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq MERGE[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

Corollary

Let π be a layered pattern of size k with $m \geq 2$ layers of lengths k_1, k_2, \ldots, k_m . Then

$$L(\pi) \leq (2k - k_1 - k_m - m + 1)^2$$
.

In particular, $L(\pi) < 4k^2$.

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq Merge[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

- Fix α , β and γ as in the lemma.
- Choose $\pi = (\pi_1, \dots, \pi_n) \in Av(\alpha \oplus \beta \oplus \gamma)$.
- Goal: color elements of π red and blue, so that the red part avoids $\alpha \oplus \beta$ and the blue part avoids $\beta \oplus \gamma$.
- The trick: color elements π_1, \ldots, π_n left to right. An element π_i is colored blue if and only if one of the following holds:

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq MERGE[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

- Fix α , β and γ as in the lemma.
- Choose $\pi = (\pi_1, \dots, \pi_n) \in Av(\alpha \oplus \beta \oplus \gamma)$.
- Goal: color elements of π red and blue, so that the red part avoids $\alpha \oplus \beta$ and the blue part avoids $\beta \oplus \gamma$.
- The trick: color elements π_1, \ldots, π_n left to right. An element π_i is colored blue if and only if one of the following holds:

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq MERGE[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

- Fix α , β and γ as in the lemma.
- Choose $\pi = (\pi_1, \dots, \pi_n) \in Av(\alpha \oplus \beta \oplus \gamma)$.
- Goal: color elements of π red and blue, so that the red part avoids $\alpha \oplus \beta$ and the blue part avoids $\beta \oplus \gamma$.
- The trick: color elements π_1, \ldots, π_n left to right. An element π_i is colored blue if and only if one of the following holds:

Lemma

For any patterns α , β and γ we have

$$Av(\alpha \oplus \beta \oplus \gamma) \subseteq Merge[Av(\alpha \oplus \beta), Av(\beta \oplus \gamma)],$$

and therefore
$$\sqrt{L(\alpha \oplus \beta \oplus \gamma)} \leq \sqrt{L(\alpha \oplus \beta)} + \sqrt{L(\beta \oplus \gamma)}$$
.

- Fix α , β and γ as in the lemma.
- Choose $\pi = (\pi_1, \dots, \pi_n) \in Av(\alpha \oplus \beta \oplus \gamma)$.
- Goal: color elements of π red and blue, so that the red part avoids $\alpha \oplus \beta$ and the blue part avoids $\beta \oplus \gamma$.
- The trick: color elements π_1, \ldots, π_n left to right. An element π_i is colored blue if and only if one of the following holds:
 - coloring π_i red would create a red copy of $\alpha \oplus \beta$, or
 - there is already a blue element π_j with $\pi_j < \pi_i$.

Remarks and Open Problems

• Let $Av_n^m(1324)$ be the set of 1324-avoiding permutations of size n with m inversions. Conjecture:

$$\forall m \, \forall n \colon |Av_n^m(1324)| \le |Av_{n+1}^m(1324)|$$

- If the conjecture holds, then $L(1324) \le e^{\pi \sqrt{2/3}} \simeq 13.002$.
- For what other patterns π , σ , τ do we have $Av(\pi) \subseteq MERGE[Av(\sigma), Av(\tau)]$?
- For what pattern π of size k is the value $L(\pi)$ maximized (or minimized)?

Remarks and Open Problems

• Let $Av_n^m(1324)$ be the set of 1324-avoiding permutations of size n with m inversions. Conjecture:

$$\forall m \forall n \colon |\mathsf{Av}_n^m(1324)| \le |\mathsf{Av}_{n+1}^m(1324)|$$

- If the conjecture holds, then $L(1324) \le e^{\pi \sqrt{2/3}} \simeq 13.002$.
- For what other patterns π , σ , τ do we have $Av(\pi) \subseteq MERGE[Av(\sigma), Av(\tau)]$?
- For what pattern π of size k is the value $L(\pi)$ maximized (or minimized)?

Remarks and Open Problems

• Let $Av_n^m(1324)$ be the set of 1324-avoiding permutations of size n with m inversions. Conjecture:

$$\forall m \forall n \colon |Av_n^m(1324)| \le |Av_{n+1}^m(1324)|$$

- If the conjecture holds, then $L(1324) \le e^{\pi \sqrt{2/3}} \simeq 13.002$.
- For what other patterns π , σ , τ do we have $Av(\pi) \subseteq MERGE[Av(\sigma), Av(\tau)]$?
- For what pattern π of size k is the value $L(\pi)$ maximized (or minimized)?

The End

Thank you for your attention!