A Fast Algorithm for Permutation Pattern Matching Based on Alternating Runs

Marie-Louise Bruner

(Joint work with Martin Lackner)

Vienna University of Technology

June 13, 2012 Permutation Patterns, Glasgow

Permutation Pattern Matching

PERMUTATION	Pattern	Matching	(PPM)	
-------------	---------	----------	-------	--

- Instance: A permutation T of length n (the text) and a permutation P of length $k \le n$ (the pattern).
- Question: Is there a matching of P into T?

Permutation Pattern Matching

PERMUTATION PATTERN MATCHI	NG (PPM)
----------------------------	----------

Instance: A permutation T of length n (the text) and a permutation P of length $k \le n$ (the pattern).

Question: Is there a matching of P into T?

Is there an algorithm that runs faster than exponential time?

PPM is NP-complete

1993 (Bose, Buss, Lubiw): PPM is in general NP-complete.

PPM is NP-complete

1993 (Bose, Buss, Lubiw): PPM is in general NP-complete.

$\Rightarrow \text{ unless } \mathsf{P} = \mathsf{NP},$ PPM cannot be solved in polynomial time

Tractable cases of PPM

- Pattern avoids both 3142 and 2413
- P = 12...k or P = k...21
- P has length at most 4
- Pattern and Text avoid 321

 $\mathcal{O}(kn^4)$ $\mathcal{O}(n \log \log n)$ $\mathcal{O}(n \log n)$ $\mathcal{O}(k^2n^6)$

The general case

Anything better than the $\mathcal{O}^*(2^n)$ runtime of brute-force search?

Parameterized Complexity Theory

Idea: confine the combinatorial explosion to a parameter of the input

Parameterized Complexity Theory

Idea: confine the combinatorial explosion to a parameter of the input

Parameterized Problem: $L \subseteq \Sigma^* \times \mathbb{N}$

Parameterized Complexity Theory

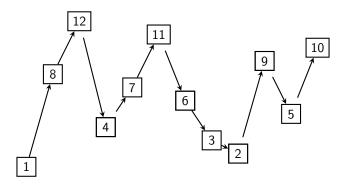
Idea: confine the combinatorial explosion to a parameter of the input

Parameterized Problem: $L \subseteq \Sigma^* \times \mathbb{N}$

Fixed-parameter tractability

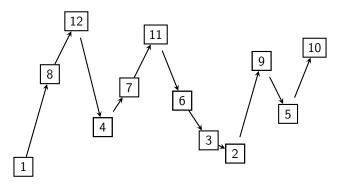
A parameterized problem L is *fixed-parameter tractable* if there is a computable function f and an integer c such that there is an algorithm solving L in time $\mathcal{O}(f(p) \cdot |I|^c)$.

Alternating runs



1 8 12 (up), 4 (down), 7 11 (up), 6 3 2 (down), 9 (up), 5 (down), 10 (up)

Alternating runs



1 8 12 (up), 4 (down), 7 11 (up), 6 3 2 (down), 9 (up), 5 (down), 10 (up)

Notation

run(π)...the number of alternating runs in π , r(i) = j if i lies in the j-th run

The alternating run algorithm

- Matching functions: Reduce the search space
- Dynamic programming algorithm: Checks for every matching function whether there is a compatible matching

Matching functions

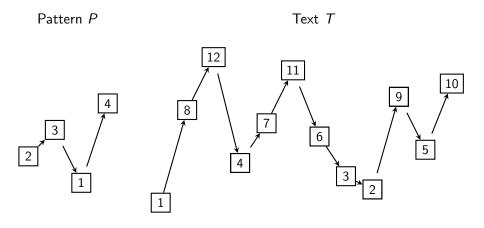
Pattern P

. . . .

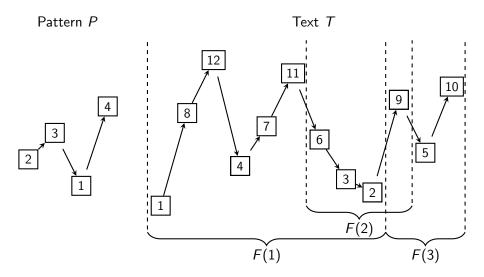
\downarrow matching function \downarrow

Text T

Matching functions - an example



Matching functions - an example



The dynamic programming algorithm - Part 1

 $X_0 := \{(0, \ldots, 0)\}$. For every $\kappa \in [k]$ the data structure X_{κ} is recursively constructed. For $\mathbf{x} \in X_{\kappa-1}$ we search for $\nu \in [n]$ satisfying:

- $\nu \in F(r(\kappa))$
- Among all elements that are larger than x_{r(κ−1)} and on the correct side of x_{r(κ)}, ν has to be a valley.
- If κ is not the largest element in its run in P, there has to be another larger element in $F(r(\kappa))$ lying to the right (resp. left) of ν if κ lies in a run up (resp. down).

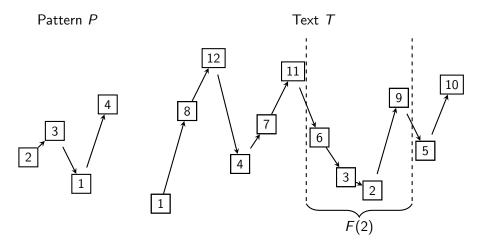
Place
$$\mathbf{x}_{\nu} := (x_1, \dots, x_{r(\kappa)-1}, \nu, x_{r(\kappa)+1}, \dots, x_{run(P)})$$
 in X'_{κ} .

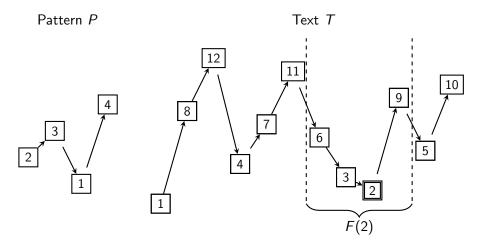
The dynamic programming algorithm - Part 1

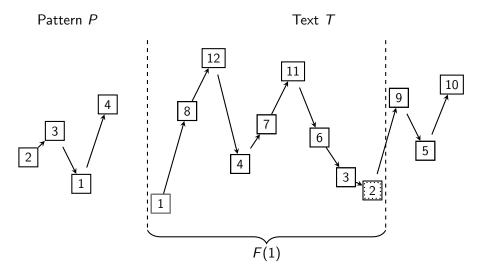
 X'_{κ} still consists of too many elements. In order to obtain the desired runtime bounds, we apply the following rules:

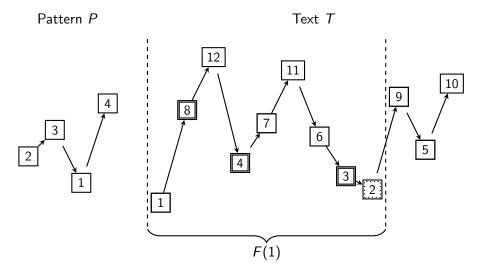
- We call a vale a subsequence of T consisting of a consecutive run down and up. If the entries of x_ν and y_μ all lie within the same vales, it is sufficient to keep one of the two.
- If κ is the largest element in its run in P, it is enough to keep one choice for every x in X_{κ-1}.

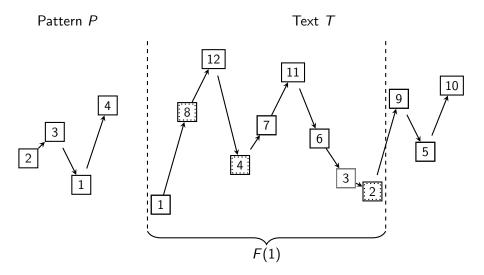
The remaining \mathbf{x}_{ν} 's then form X_{κ} .

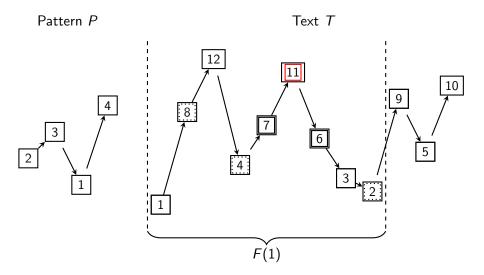


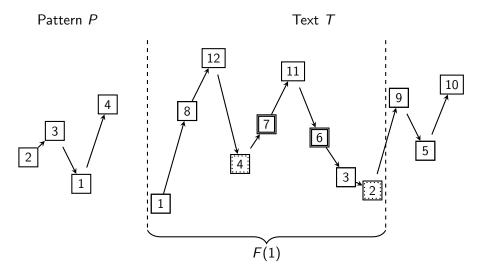


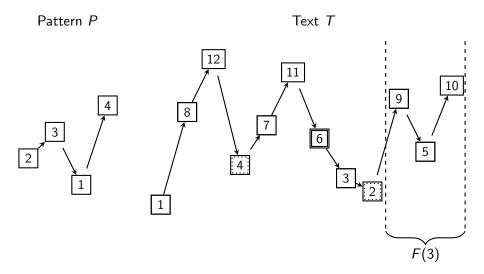


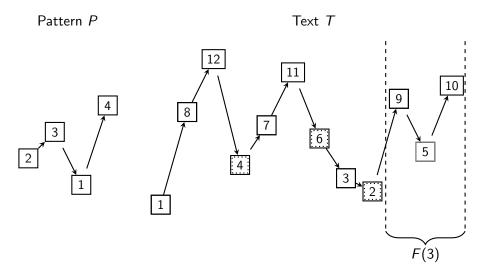


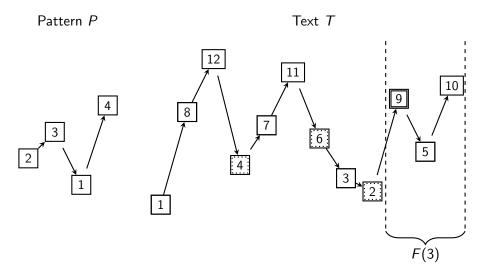












Matching functions:

Dynamic programming algorithm:

 $\sqrt{2}^{\operatorname{run}(\mathcal{T})}$ $\mathcal{O}^*(1.2611^{\operatorname{run}(\mathcal{T})})$

Matching functions:

Dynamic programming algorithm:

In total:

 $\sqrt{2}^{\operatorname{run}(\mathcal{T})}$ $\mathcal{O}^*(1.2611^{\operatorname{run}(\mathcal{T})})$

 $\mathcal{O}^*(1.784^{\operatorname{run}(T)})$

Matching functions: $\sqrt{2}^{\operatorname{run}(T)}$ Dynamic programming algorithm: $\mathcal{O}^*(1.2611^{\operatorname{run}(T)})$ In total: $\mathcal{O}^*(1.784^{\operatorname{run}(T)})$

→ This is a fixed-parameter tractable (FPT) algorithm, i.e. a runtime of $f(k) \cdot n^c$.

Matching functions: $\sqrt{2}^{\operatorname{run}(T)}$ Dynamic programming algorithm: $\mathcal{O}^*(1.2611^{\operatorname{run}(T)})$ In total: $\mathcal{O}^*(1.784^{\operatorname{run}(T)})$ \rightarrow This is a fixed-parameter tractable (FPT) algorithm,
i.e. a runtime of $f(k) \cdot n^c$.

Since $run(T) \leq n$, we also obtain

 $O^*(1.784^n)$

Alternating runs in the pattern run(P)

$$\mathcal{O}^*(1.784^{\operatorname{run}(T)})$$
 FPT, i.e. $f(k) \cdot n^c$

$$\mathcal{O}^*\left(\left(\frac{n^2}{2\operatorname{run}(P)}\right)^{\operatorname{run}(P)}\right)$$
 XP, i.e. $n^{f(k)}$

Alternating runs in the pattern run(P)

$$\mathcal{O}^*(1.784^{\operatorname{run}(T)})$$
 FPT, i.e. $f(k) \cdot n^c$

$$\mathcal{O}^*\left(\left(\frac{n^2}{2\mathsf{run}(P)}\right)^{\mathsf{run}(P)}\right)$$

XP, i.e.
$$n^{f(k)}$$

no FPT result possible (W[1]-hardness)

Conclusion

What have we done?

We found

- a fast algorithm for the parameter run(T),
- a slow algorithm for the parameter run(P).

Conclusion

What have we done?

We found

- a fast algorithm for the parameter run(T),
- a slow algorithm for the parameter run(P).

Future work

▶ PPM parameterized by some other parameter of *P*? By k = run(P)?

Conclusion

What have we done?

We found

- a fast algorithm for the parameter run(T),
- a slow algorithm for the parameter run(P).

Future work

- ▶ PPM parameterized by some other parameter of *P*? By k = run(P)?
- Other permutation statistics in the text?