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Pattern Containment and Avoidance

Definition
We say that the permutation p = p1p2 . . . pn ∈ Sn contains a

q-pattern if and only if there is a subsequence pi1pi2 . . . pik of p
whose elements are in the same relative order as those in q, that is,

pit < piu if and only if qt < qu

whenever 1 ≤ t, u ≤ k .

If p does not contain q, then we say that p avoids q.



Example

The permutation p = 3267415 contains the pattern q = 231
(consider the first, fourth and sixth entries).

On the other hand, p avoids 4321 since p does not contain a
decreasing subsequence of length 4.



A family of questions

Joshua Cooper has raised the following interesting family of
questions.

Question

Let r be a given permutation pattern. What can be said about the

average number of occurrences of q in a randomly selected

r-avoiding permutation of a given length?

Equivalently, can we determine the total number Sn,r (q) of all
q-patterns in all r -avoiding permutations of length n?



Earlier Results

Present author found formulae for the generating functions of the
sequence S132,n(q) for the cases of monotone q, that is, for
q = 12 · · · k and q = k(k − 1) · · · 1, for any k .

He also proved that if n is large enough, then for any fixed k ,
among all patterns q of length k , it is the monotone decreasing
pattern that maximizes S132,n(q) and it is the monotone increasing
pattern that minimizes S132,n(q).



Surprising Symmetries
We first noticed the following surprising fact, that is not overly
difficult to prove using generating functions.

For all positive integers n, the equalities

S132,n(231) = S132,n(312) = S132,n(213) (1)

hold.

The first equality is trivial, since taking the inverse of a
132-avoiding permutation keeps that permutation 132-avoiding,
and turns 231-patterns into 312-patterns.



However, the second equality is non-trivial. (The reverse or
complement of a 132-avoiding permutation is not necessarily
132-avoiding.)

In particular, if a(p) denotes the number of 213-copies in p, and
b(p) denotes the number of 231-copies in p, then the statistics
a(p) and b(p) are not equidistributed over the set of all
132-avoiding permutations of length n, but their average values (or
cumulative values) are equal over that set.



We will first show a bijective proof of this fact, then we show a far
reaching generalization of that proof, which deals with much
longer patterns, for which generating functions would have been
unlikely (or at least very unpleasant) to work.



Binary Plane Trees
In our proof, we will identify a 132-avoiding permutation p with its
binary plane tree T (p) using a very well-known bijection.

The tree T (p) will be a binary plane tree, that is, a rooted
unlabeled tree in which each vertex has at most two children, and
each child is a left child or a right child of its parent, even if it is
the only child of its parent.

The root of T (p) corresponds to the entry n of p, the left subtree
of the root corresponds to the string of entries of p on the left of
n, and the right subtree of the root corresponds to the string of
entries of p on the right of n. Both subtrees are constructed
recursively, by the same rule.



Note that since p is 132-avoiding, the position of the entry n of p
determines the set of entries that are on the left (resp. on the
right) of n.

In fact, if n is in the ith position, the set of entries on the left of n
must be {n− i + 1, n− i + 2, · · · , n− 1}, and the set of entries on
the right of n must be {1, 2, · · · , n − i}.
See Figure 11 for an illustration.
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Figure: The tree T (p) for p = 67823415, and the entries of p associated
to the vertices of T (p).



Let p be a 132-avoiding n-permutation, and let Q be an
occurrence of the pattern 213 in p. Let Q2,Q1,Q3 be the three
vertices of T (p) that correspond to Q, going left to right. Let us
color these three entries black. There are then two possibilities.

1. Either Q1 is a right descendant of Q2 and Q2 is a left
descendant of Q3, or

2. there exists a lowest left descendant Qx of Q3 so that Q2 is a
left descendant of Qx and Q1 is a right descendant of Qx .



Let An be the set of all binary plane trees on n vertices in which
three vertices forming a 213-pattern are colored black. Let Bn be
the set of all binary plane trees on n vertices in which three
vertices forming a 231-pattern are colored black.

Now we define a map f : An → Bn. We will then prove that f is a
bijection. The map f will be defined differently in the two cases
described above.

Case 1. If T ∈ An is in the first case, then let f (T ) be the pair
obtained by interchanging the right subtree of Q2 and the right
subtree of Q3. Keep all three black vertices Qi black, even as Q1

gets moved. See Figure 14 for an illustration.
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Figure: Interchanging the right subtrees of Q2 and Q3.



Note that in f (T ), in the set of black vertices, there is one that is
an ancestor of the other two, namely Q3.

Case 2. If T ∈ An is in the second case, then let f (T ) be the tree
obtained by interchanging the right subtrees of the vertices Qx and
Q3, and coloring Q2, Qx and Q1 black. See Figure 16 for an
illustration.
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Note that in f (T ), there is no black vertex that is an ancestor of
the other two black vertices. Also note that in f (T ), the lowest
common ancestor of Qx and Q1 is Q3.

It is a direct consequence of our definitions that if T ∈ An, then
f (T ) = Bn.

Theorem
The map f : An → Bn defined above is a bijection.



Proof:

Let U ∈ Bn. We show that there is exactly one T ∈ An so that
f (T ) = U holds. This will show that f has an inverse.

By definition, three nodes of U are colored black, and the entries
of the permutation corresponding to U form a 231-pattern.

Let K2, K3, and K1 denote these three vertices, from left to right.
There are two possibilities for the location of the Ki relative to
each other. We show that in both cases, U has a unique preimage
under f , essentially because swapping two subtrees is an involution.



1. If K3 is an ancestor of both other black vertices, then
f (T ) = U implies that T belongs to Case 1. In this case, the
unique T ∈ An satisfying f (T ) = U is obtained by swapping
the right subtrees of K3 and K2, and keeping all three black
vertices black, even if K1 got moved.

2. If K3 is not an ancestor of both other black vertices and then
f (T ) = U implies that T belongs to Case 2. In this case, let
Kx be the smallest common ancestor of U3 and U1. Then the
unique T ∈ An satisfying f (T ) = U is obtained by swapping
the right subtrees of K3 and Kx , and coloring Kx black
instead of K3, while keeping K1 and K2 black.

This completes the proof.



A Generalization

Definition
Let q be a pattern of length k and let t be a pattern of length m.
Then q ⊕ t is the pattern of length k +m defined by

(q ⊕ t)i =







qi if i ≤ k ,

ti−k + k if i > k .

In other words, q ⊕ t is the concatenation of q and t so that all
entries of t are increased by the size of q.



Example

If q = 3142 and t = 132, then q ⊕ t = 3142576.

Definition
Let q be a pattern of length k and let t be a pattern of length m.
Then q ⊖ t is the pattern of length k +m defined by

(q ⊖ t)i =







qi +m if i ≤ k ,

ti−k if i > k .

In other words, q ⊖ t is the concatenation of q and t so that all
entries of q are increased by the size of t.



Example

If q = 3142 and t = 132, then q ⊖ t = 6475132.

Theorem
Let q and t be any non-empty patterns that end in their largest

entry. Let iu denote the increasing pattern 12 · · · u. Then for all

positive integers n, we have

Sn,132((q ⊖ t)⊕ iu) = Sn,132((q ⊕ iu)⊖ t),

where 1 denotes the pattern consisting of one entry.



Example

If q = 3124, t = 213, and u = 2, then Theorem 8 says that

Sn,132(645721389) = Sn,132(645789213).



Further direction of research: are there any non-trivial identities in
which the two sides have different culling patterns?

A recent result of Cheyne Homberger shows the following.

Theorem
For all positive integers n, the equality

Sn,132(231) = Sn,123(231).


