Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilf-

Equivalence 1

Equivalences 2

Conclusions

Shape-Wilf-equivalences for vincular patterns

Andrew M. Baxter

Department of Mathematics Pennsylvania State University

Permutation Patterns 2012 University of Strathclyde, Glasgow June 11, 2012

Goals

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences & 3

onclusions

Goal

Classify vincular patterns according to Wilf-equivalence.

Vincular patterns

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

(Also called "generalized patterns" or "dashed patterns".

Definition by examples: Permutation $\pi \in \mathfrak{S}_n$ contains a copy of 23-1 if there are indices $1 \le i < i + 1 < j \le n$ such that $\pi_i \pi_{i+1} \pi_i \approx 231$.

Example: 24315 contains a copy of 23-1

Example: 31524 avoids 23-1.

Example: 31524 contains a copy of 2-31 (and 2-3-1).

Absence of a dash indicates adjacency required. Presence of a dash indicates space is allowed.

Vincular patterns in context

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2 ४, ३

onclusions

"Classical" patterns have all dashes. e.g., 2-3-1.

e.g. Stack-sortable permutations avoid 2-3-1.

"Consecutive" patterns have no dashes. e.g., 231.

e.g. Permutations with no double-descents avoid 321.

Vincular patterns in context

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2

onclusions

"Classical" patterns have all dashes. e.g., 2-3-1.

e.g. Stack-sortable permutations avoid 2-3-1.

"Consecutive" patterns have no dashes. e.g., 231.

e.g. Permutations with no double-descents avoid 321.

23-1 as a mesh pattern:

Notation

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilf equivalence

Equivalence 1

Fauivalences

onclusions

Notation

For a pattern σ , let $\mathfrak{S}_n(\sigma)$ be the σ -avoiding permutations in \mathfrak{S}_n (i.e., those permutations with no copies of σ). Let $S_n(\sigma) := |\mathfrak{S}_n(\sigma)|$.

Definition

The patterns α and β are Wilf-equivalent if $S_n(\alpha) = S_n(\beta)$ for all $n \ge 0$. Denote this $\alpha \sim \beta$.

Goal

Classify vincular patterns according to Wilf-equivalence.

Previous Work

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

onclusions

Classical patterns classified for length $k \le 7$: Simion & Schmidt (1985), Babson & West (2001), Stankova & West (2002), Backelin, West, & Xin (2007)

Vincular patterns classified for length $k \le 3$: Claesson (2001).

Other Wilf-equivalences for vincular patterns: Kitaev (2005), Elizalde (2006), Kasraoui (2012 preprint)

Current Work

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Fauivalences

onclusions

One of the most useful tools for Wilf-classification of classical patterns is "shape-Wilf-equivalence," but this has not be explored for vincular patterns.

Goal

Explore shape-Wilf-equivalence for vincular patterns.

Outline of Talk

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

✓ Introduction

- Shape-Wilf-equivalence
- Equivalence 1
- Equivalences 2 & 3
- Conclusion

Transversals in Young diagrams

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2

Conclusions

A transversal π in Young diagram $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ is a placement of n rooks in boxes of λ such that there is exactly one rook in every row and column.

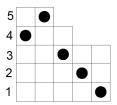


Figure : Transversal $\pi = 45321$ of $\lambda = (5, 5, 4, 3, 3)$.

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2 & 3

onclusions

A transversal π of Young diagram λ contains σ if

- Underlying permutation π contains σ , and
- lacksquare λ contains the entire box formed by the copy of σ .

Otherwise π avoids σ .

Example: Transversal $\pi = 45321$ of λ

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences :

onclusions

A transversal π of Young diagram λ contains σ if

- Underlying permutation π contains σ , and
- lacksquare λ contains the entire box formed by the copy of σ .

Otherwise π avoids σ .

Example: Transversal $\pi = 45321$ of λ contains 321

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences (

Conclusions

A transversal π of Young diagram λ contains σ if

- Underlying permutation π contains σ , and
- lacksquare λ contains the entire box formed by the copy of σ .

Otherwise π avoids σ .

Example: Transversal $\pi = 45321$ of λ contains 321

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

onclusions

A transversal π of Young diagram λ contains σ if

- Underlying permutation π contains σ , and
- lacksquare λ contains the entire box formed by the copy of σ .

Otherwise π avoids σ .

Example: Transversal $\pi = 45321$ of λ contains 321, but avoids 23-1

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences :

Conclusions

A transversal π of Young diagram λ contains σ if

- Underlying permutation π contains σ , and
- lacksquare λ contains the entire box formed by the copy of σ .

Otherwise π avoids σ .

Example: Transversal $\pi = 45321$ of λ contains 321, but avoids 23-1

Shape-Wilf-Equivalence

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Fauivalences

& 3

Notation

Let $\mathfrak{S}_{\lambda}(\sigma)$ be the set of transversals of λ avoiding σ . Let $S_{\lambda}(\sigma) := |\mathfrak{S}_{\lambda}(\sigma)|$.

Definition

If $S_{\lambda}(\alpha) = S_{\lambda}(\beta)$ for all λ , then α and β are shape-Wilf-equivalent and we write $\alpha \stackrel{\mathfrak{s}}{\sim} \beta$.

Direct sum

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2

Conclusions

The *direct sum* of two permutations, $\alpha \in \mathfrak{S}_k$ and $\beta \in \mathfrak{S}_\ell$, is the length- $(k + \ell)$ permutation $\alpha \oplus \beta$, formed by placing β above and to the right of α .

Example: $312 \oplus 2413 = 3125746$.

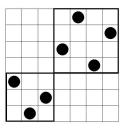


Figure: $312 \oplus 2413 = 3125746$

Direct sum for vincular patterns

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

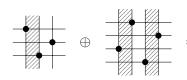
Equivalences

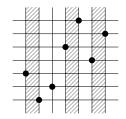
onclusions

The *direct sum* of two vincular patterns α and β is the vincular pattern $\alpha \oplus \beta$, formed by placing β above and to the right of α and inserting a dash between α and β .

Example: $31-2 \oplus 24-13 = 31-2-57-46$.

As mesh patterns:





Shape-Wilf-equivalence and direct sums

Shape-Wilfequivalences for vincular patterns

Andrew Maxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2 & 3

onclusions

Backelin, West, and Xin show that shape-Wilf-equivalence combines well with direct sums for classical patterns.

Lemma (Backelin, West, Xin, 2007)

For classical patterns α , β , and σ , if $\alpha \stackrel{s}{\sim} \beta$ then $\alpha \oplus \sigma \stackrel{s}{\sim} \beta \oplus \sigma$.

Does this hold when α , β , σ are vincular patterns?

Shape-Wilf-equivalence and direct sums

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2

Conclusions

Backelin, West, and Xin show that shape-Wilf-equivalence combines well with direct sums for classical patterns.

Lemma (Backelin, West, Xin, 2007)

For classical patterns α , β , and σ , if $\alpha \stackrel{\mathfrak{s}}{\sim} \beta$ then $\alpha \oplus \sigma \stackrel{\mathfrak{s}}{\sim} \beta \oplus \sigma$.

Does this hold when α , β , σ are vincular patterns? Yes.

Lemma (B. 2012)

For vincular patterns α , β , and σ , if $\alpha \stackrel{5}{\sim} \beta$ then $\alpha \oplus \sigma \stackrel{5}{\sim} \beta \oplus \sigma$.

(Also true for certain mesh patterns α , β , and σ .)

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

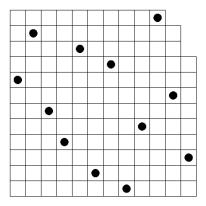


Figure : Start with transversal $\pi \in \mathfrak{S}_{\lambda}(\alpha \oplus \sigma)$. (Here $\alpha = 1$ -2 and $\sigma = 1$ -2)

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

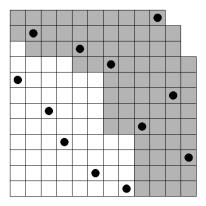


Figure : Color cells white if there is a σ northeast of it. Gray otherwise. (Here, $\sigma=1$ -2.)

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

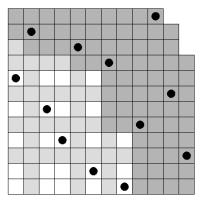


Figure: Color white cells gray if they are in the same row/column as a rook in a gray cell.

Shape-Wilfequivalences for vincular patterns

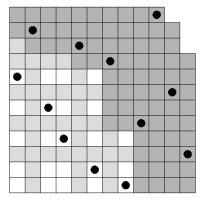
Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences



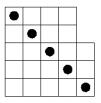


Figure : Remaining rooks in white cells form a α -avoiding transversal of another Young diagram. Use bijection $f: \mathfrak{S}_{\lambda'}(\alpha) \to \mathfrak{S}_{\lambda'}(\beta)$ on white board.

Pairs of shape-Wilf-equivalent classical patterns

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

onclusions

Previous work uncovered one family and one sporadic shape-Wilf-equivalence among classical patterns.

Theorem (Backelin, West, Xin, 2007)

$$(1-2-\cdots-t)\stackrel{s}{\sim} (t-\cdots-2-1)$$
 for any $t\geq 1$.

Theorem (Stankova, West, 2002)

$$2-3-1 \stackrel{s}{\sim} 3-1-2$$
.

Potential pairs of shape-Wilf-equivalent vincular patterns

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

. Emiliadament

. . .

A computer search of length 3 vincular shows at most three more potential shape-Wilf-equivalent pairs:

- 11 12-3 $\stackrel{s}{\sim}$ 21-3
- 2 1-23 ~ 3-12
- **3** 1-32 ^s 3-21

All three are true.

Outline of Talk

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2 & 3

onclusions

✓ Introduction

√ Shape-Wilf-equivalence

■ Equivalence 1: $12-3 \stackrel{s}{\sim} 21-3$

■ Equivalences 2 & 3: 1-23 $\stackrel{5}{\sim}$ 3-12 and 1-32 $\stackrel{5}{\sim}$ 3-21

Equivalence 1: $12-3 \stackrel{s}{\sim} 21-3$

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalence

Conclusions

Previously: Elizalde (2006), Kitaev (2005): For consecutive patterns α and β , $\alpha \sim \beta \implies \alpha \oplus 1 \sim \beta \oplus 1$.

Theorem (B. 2012)

Let α , β be consecutive patterns. If $\alpha \sim \beta$, then $\alpha \oplus 1 \stackrel{s}{\sim} \beta \oplus 1$.

Corollary

$$12-3 \stackrel{s}{\sim} 21-3$$

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilf-

Equivalence 1

Equivalences 2

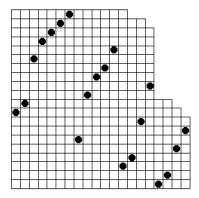


Figure : Start with a transversal $\pi \in \mathfrak{S}_{\lambda}(\alpha \oplus 1)$.

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences :

Conclusions

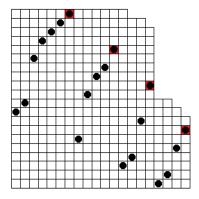


Figure : Identify the right-to-left maxima of π .

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences & 3

Conclusions

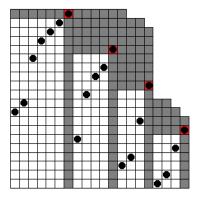


Figure : Dissect π according to right-to-left maxima. Each subword in white cells avoids α .

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

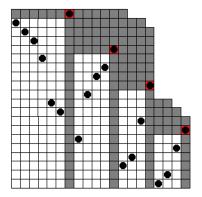
Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions



Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

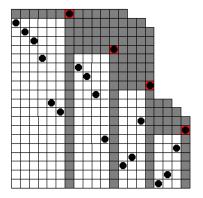
Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions



Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

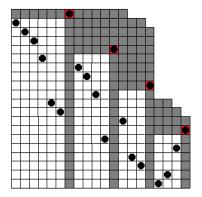
Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions



Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

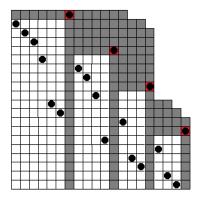
Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions



Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions

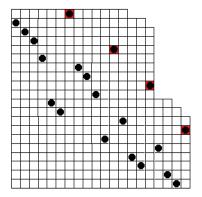


Figure : The end result is a transversal in $\mathfrak{S}_{\lambda}(\beta \oplus 1)$ (with the same right-to-left maxima).

A significant generalization

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

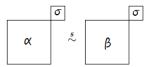
Equivalences 2

onclusions

We may extend this approach significantly to get:

Theorem (B. 2012)

Let α , β , and σ be consecutive patterns. If $\alpha \sim \beta$, then $\alpha \oplus \sigma \stackrel{\mathfrak{s}}{\sim} \beta \oplus \sigma$.



Changes to the proof: "Right-to-left maxima" get replaced by "right-to-left maximal copies of σ ".

 $\mathfrak{S}_{\lambda}(21 \oplus 12) \rightarrow \mathfrak{S}_{\lambda}(12 \oplus 12)$

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

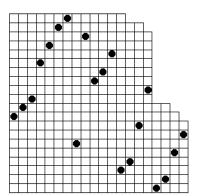
Introduction

Shape-Wilf-

Equivalence 1

Equivalences:

onclusions



 $\mathfrak{S}_{\lambda}(21 \oplus 12) \rightarrow \mathfrak{S}_{\lambda}(12 \oplus 12)$

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

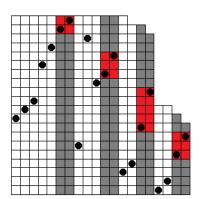
Introduction

Shape-Wilf-

Equivalence 1

Equivalences 2

Conclusions



 $\mathfrak{S}_{\lambda}(21 \oplus 12) \rightarrow \mathfrak{S}_{\lambda}(12 \oplus 12)$

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

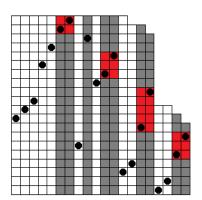
Introduction

Shape-Wilf-

Equivalence 1

Equivalences 2

Conclusions



 $\mathfrak{S}_{\lambda}(21 \oplus 12) \rightarrow \mathfrak{S}_{\lambda}(12 \oplus 12)$

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

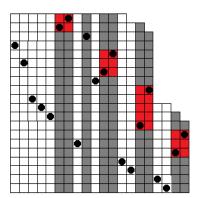
Introduction

Shape-Wilf-

Equivalence 1

Equivalences :

Conclusions



A different generalization

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

onclusions

Theorem (B. 2012)

Let α and β be vincular patterns of length k so that both end with k. If $\alpha \sim \beta$ then $\alpha \stackrel{\$}{\sim} \beta$.

Corollary

 $12-3 \stackrel{s}{\sim} 21-3$

Corollary

3124 $\stackrel{s}{\sim}$ 3214. (Elizalde & Noy (2003) proved 3124 \sim 3214)

Outline of Talk

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2 & 3

onclusions

- ✓ Introduction
- √ Shape-Wilf-equivalence
- ✓ Equivalence 1: $12-3 \stackrel{s}{\sim} 21-3$
 - Equivalences 2 & 3: 1-23 $\stackrel{s}{\sim}$ 3-12 and 1-32 $\stackrel{s}{\sim}$ 3-21
 - Conclusion

The other equivalences

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2

& 3

onclusions

We now turn our attention to proving the equivalence

1-23 $\stackrel{s}{\sim}$ 3-12.

The equivalence $1-32 \stackrel{s}{\sim} 3-21$ is proven similarly.

Illustration of bijection: $\mathfrak{S}_{\lambda}(1-23) \to \mathfrak{S}_{\lambda}(3-12)$

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

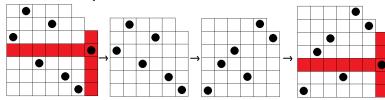
Equivalence 1

Equivalences 2

onclusions

& 3

Main Technique: Delete the last letter and use induction.



End with a stronger result:

$$S_{\lambda}(1-23)[a] = \begin{cases} S_{\lambda}(3-12)[\lambda_n] & a = 1\\ S_{\lambda}(3-12)[a-1] & 2 \le a \le \lambda_n, \end{cases}$$

where S[a] is the number of $\pi \in S$ ending with a.

Skew-sums

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilf-

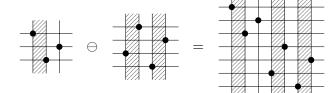
Equivalence 1

Equivalences 2 & 3

onclusions

For patterns α , β , form the *skew sum* $\alpha \ominus \beta$ by placing β <u>below</u> and to the right of α and inserting a dash between α and β .

Example $31-2 \ominus 24-13 = 75-6-24-13$



Generalization of equivalences 2 & 3

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilf-

Equivalence 1

Equivalences 2 & 3

onclucione

Equivalence 2: $1 \oplus 12 \stackrel{5}{\sim} 1 \ominus 12$ Equivalence 3: $1 \oplus 21 \stackrel{5}{\sim} 1 \ominus 21$.

Generalization of equivalences 2 & 3

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences 2

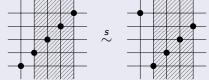
Conclusions

& 3

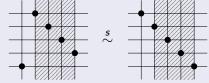
Equivalence 2: $1 \oplus 12 \stackrel{5}{\sim} 1 \ominus 12$ Equivalence 3: $1 \oplus 21 \stackrel{5}{\sim} 1 \ominus 21$.

Theorem (B. 2012)

 $1 \oplus (12 \cdots t) \stackrel{s}{\sim} 1 \ominus (12 \cdots t)$ for any $t \geq 2$



 $1 \oplus (t \cdots 21) \stackrel{s}{\sim} 1 \ominus (t \cdots 21)$ for any $t \geq 2$



Outline of Talk

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introductio

Shape-Wilfequivalence

Equivalence 1

Equivalences 2 & 3

onclusions

✓ Introduction

√ Shape-Wilf-equivalence

✓ Equivalence 1: $12-3 \stackrel{s}{\sim} 21-3$

 \checkmark Equivalences 2 & 3: 1-23 $\stackrel{5}{\sim}$ 3-12 and 1-32 $\stackrel{5}{\sim}$ 3-21

Conclusion

A new Wilf-equivalence class

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Faulvalances

Conclusions

Corollary

 $12-3-4 \sim 21-3-4 \sim 12-4-3 \sim 21-4-3$

Proof.

1 12-3-4 =
$$(12 \oplus 1) \oplus 1 \stackrel{s}{\sim} (21 \oplus 1) \oplus 1 = 21-3-4$$
.

2
$$(12-3-4)^{rc} = 1-2-34 = (1-2) \oplus 12$$

 $(12-4-3)^{rc} = 2-1-34 = (2-1) \oplus 12$
 $1-2 \stackrel{>}{\sim} 2-1$, so $(1-2) \oplus 12 \stackrel{>}{\sim} (2-1) \oplus 12$.

3
$$(21-3-4)^{rc} = (1-2) \oplus 21 \stackrel{s}{\sim} (2-1) \oplus 21 = (21-4-3)^{rc}$$

Wilf-equivalence results

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions

Elizalde / Kitaev proved 1-23-4 \sim 1-32-4. The equivalences 1-23 $\stackrel{5}{\sim}$ 3-12 and 1-32 $\stackrel{5}{\sim}$ 3-21 add to this class:

Corollary

$$3-12-4 \sim 1-23-4 \sim 1-32-4 \sim 3-21-4$$

There seems to be one more member of this class:

Conjecture

$$23-1-4 \sim 3-12-4$$

Wilf-equivalence results

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Fauivalences

Conclusions

Corollary

- 1 123-4 \sim 321-4
- 2 213-4 \sim 231-4 \sim 132-4 \sim 312-4
- 3 $12-3-4 \sim 12-4-3 \sim 21-3-4 \sim 21-4-3$
- 4 $12-34 \sim 12-43 \sim 21-34 \sim 21-43$
- 5 $3-12-4 \sim 1-23-4 \sim 1-32-4 \sim 3-21-4$ **Coni:** $23-1-4 \sim 3-12-4$

More Wilf-equivalence results

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions

Corollary

- **1** $12-345 \sim 21-345 \sim 12-543 \sim 21-543$
- 2 $12-435 \sim 12-453 \sim 12-534 \sim 12-354 \sim 21-435 \sim 21-453 \sim 21-534 \sim 21-354$
- $123-4-5 \sim 321-4-5$
- 4 213-4-5 \sim 231-4-5 \sim 132-4-5 \sim 312-4-5
- **5** $12-3-4-5 \sim 12-5-4-3 \sim 12-3-5-4 \sim 21-3-4-5 \sim 21-5-4-3 \sim 21-3-5-4$
- **6** 12-4-3-5 \sim 21-4-3-5 **Conj**: 12-3-4-5 \sim 12-4-3-5
- 7 12-5-3-4 \sim 12-4-5-3 \sim 21-5-3-4 \sim 21-4-5-3

Shape-Wilf-equivalent pairs of consecutive patterns

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equiva & 3

Conclusions

A computer search suggests:

Conjecture

- **1** 4123 ⁵ 4213
- $2 1432 \stackrel{s}{\sim} 1342$
- 3 2341 ⁵ 2431

Note: $3124 \stackrel{s}{\sim} 3214$ discussed previously.

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions

- 2 If α , β , and σ are vincular patterns, then $\alpha \stackrel{5}{\sim} \beta \implies \alpha \oplus \sigma \stackrel{5}{\sim} \beta \oplus \sigma$.
- If α , β , and σ are consecutive patterns, then $\alpha \sim \beta \implies \alpha \oplus \sigma \stackrel{s}{\sim} \beta \oplus \sigma$.
- 4 $1 \oplus (12 \cdots t) \stackrel{s}{\sim} 1 \ominus (12 \cdots t)$ and $1 \oplus (t \cdots 21) \stackrel{s}{\sim} 1 \ominus (t \cdots 21)$ for any $t \geq 2$.
- **5** These shape-Wilf-equivalences have many consequences for the Wilf-classification of vincular patterns.

Shape-Wilfequivalences for vincular patterns

Andrew N Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Fauivalences

Conclusions

- 2 If α , β , and σ are vincular patterns, then $\alpha \stackrel{s}{\sim} \beta \implies \alpha \oplus \sigma \stackrel{s}{\sim} \beta \oplus \sigma$.
- If α , β , and σ are consecutive patterns, then $\alpha \sim \beta \implies \alpha \oplus \sigma \stackrel{s}{\sim} \beta \oplus \sigma$.
- 4 $1 \oplus (12 \cdots t) \stackrel{s}{\sim} 1 \ominus (12 \cdots t)$ and $1 \oplus (t \cdots 21) \stackrel{s}{\sim} 1 \ominus (t \cdots 21)$ for any $t \geq 2$.
- **5** These shape-Wilf-equivalences have many consequences for the Wilf-classification of vincular patterns.

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions

- 2 If α , β , and σ are vincular patterns, then $\alpha \stackrel{5}{\sim} \beta \implies \alpha \oplus \sigma \stackrel{5}{\sim} \beta \oplus \sigma$.
- 3 If α , β , and σ are consecutive patterns, then $\alpha \sim \beta \implies \alpha \oplus \sigma \stackrel{s}{\sim} \beta \oplus \sigma$.
- 4 $1 \oplus (12 \cdots t) \stackrel{s}{\sim} 1 \ominus (12 \cdots t)$ and $1 \oplus (t \cdots 21) \stackrel{s}{\sim} 1 \ominus (t \cdots 21)$ for any $t \ge 2$.
- **5** These shape-Wilf-equivalences have many consequences for the Wilf-classification of vincular patterns.

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions

- 2 If α , β , and σ are vincular patterns, then $\alpha \stackrel{5}{\sim} \beta \implies \alpha \oplus \sigma \stackrel{5}{\sim} \beta \oplus \sigma$.
- If α , β , and σ are consecutive patterns, then $\alpha \sim \beta \implies \alpha \oplus \sigma \stackrel{\mathfrak{s}}{\sim} \beta \oplus \sigma$.
- 4 $1 \oplus (12 \cdots t) \stackrel{s}{\sim} 1 \ominus (12 \cdots t)$ and $1 \oplus (t \cdots 21) \stackrel{s}{\sim} 1 \ominus (t \cdots 21)$ for any $t \ge 2$.
- **5** These shape-Wilf-equivalences have many consequences for the Wilf-classification of vincular patterns.

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions

- 2 If α , β , and σ are vincular patterns, then $\alpha \stackrel{5}{\sim} \beta \implies \alpha \oplus \sigma \stackrel{5}{\sim} \beta \oplus \sigma$.
- If α , β , and σ are consecutive patterns, then $\alpha \sim \beta \implies \alpha \oplus \sigma \stackrel{s}{\sim} \beta \oplus \sigma$.
- 4 $1 \oplus (12 \cdots t) \stackrel{s}{\sim} 1 \ominus (12 \cdots t)$ and $1 \oplus (t \cdots 21) \stackrel{s}{\sim} 1 \ominus (t \cdots 21)$ for any $t \ge 2$.
- **5** These shape-Wilf-equivalences have many consequences for the Wilf-classification of vincular patterns.

Shape-Wilfequivalences for vincular patterns

Andrew M Baxter

Introduction

Shape-Wilfequivalence

Equivalence 1

Equivalences

Conclusions

1 The notion of shape-Wilf-equivalence extends nicely to vincular patterns (and mesh patterns in general).

- 2 If α , β , and σ are vincular patterns, then $\alpha \stackrel{s}{\sim} \beta \implies \alpha \oplus \sigma \stackrel{s}{\sim} \beta \oplus \sigma$.
- If α , β , and σ are consecutive patterns, then $\alpha \sim \beta \implies \alpha \oplus \sigma \stackrel{s}{\sim} \beta \oplus \sigma$.
- 4 $1 \oplus (12 \cdots t) \stackrel{s}{\sim} 1 \ominus (12 \cdots t)$ and $1 \oplus (t \cdots 21) \stackrel{s}{\sim} 1 \ominus (t \cdots 21)$ for any $t \geq 2$.
- **5** These shape-Wilf-equivalences have many consequences for the Wilf-classification of vincular patterns.

Thank you.