Generalized Interval Embeddings

Brian Miceli (Trinity University)

Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ and let \mathbb{N}^* denote the set of all words over \mathbb{N} . Let ϵ denote the empty word. Given words u and v in \mathbb{N}^* , we say that u is a factor of v if there are words w_1 and w_2 such that $v = w_1 u w_2$. In such a situation, we say u is a suffix of v if $w_2 = \epsilon$. Given $u = u_1 u_2 \ldots u_\ell \in \mathbb{N}^*$, we define the *norm of* u to be $\Sigma u = u_1 + u_2 + \cdots + u_\ell$ and we define the *length of* u to be $|u| = \ell$. We then allow x and t to be commuting variables and we define the *weight of* u to be $wt(u) = x^{\Sigma u}t^{|u|}$.

Given any poset $\mathcal{P} = (\mathbb{N}, \leq_p)$ and $m, n \in \mathbb{N}$, we let $I_{m,\infty}^{\mathcal{P}} = \{k \in \mathbb{N} : m \leq_p k\}$ and $I_{m,n}^{\mathcal{P}} = \{n \in \mathbb{N} : m \leq_p k \leq_p n\}$. Given any words $u = u_1 \dots u_k$ and $w = w_1 w_2 \dots w_\ell$ in \mathbb{N}^* , we say that u embeds into w relative to \mathcal{P} , written $u \leq_{\mathcal{P}} w$ if there is a factor $w' = w'_1 w'_2 \dots w'_k$ of w such that $w'_i \in I_{u_i,\infty}^{\mathcal{P}}$ for every $1 \leq i \leq k$. We define $S^{\mathcal{P}}(u)$ to be the set of all words w that embed u such that the only embedding of u into w occurs at the right end of w, and we set

$$S^{\mathcal{P}}(u, x, t) = \sum_{w \in S^{\mathcal{P}}(u)} wt(w).$$

Given $u, v \in \mathbb{N}^*$, u and v are \mathcal{P} -Wilf equivalent, written as $u \sim_{\mathcal{P}} v$, if $\mathcal{S}^{\mathcal{P}}(u, x, t) = \mathcal{S}^{\mathcal{P}}(v, x, t)$. Kiteav, Liese, Remmel and Sagan [1] studied various properties of \mathcal{P} -Wilf Equivalence where \mathcal{P} is the standard order on \mathbb{N} and Langley, Liese, and Remmel [2] studied various properties of \mathcal{P}_k -Wilf equivalence where $\mathcal{P}_k = (\mathbb{N}, \leq_k)$ and $i \leq_k j$ if and only if $i \equiv j \mod k$ and i < j.

We study a generalization \mathcal{P} -Wilf equivalence based on intervals. That is, suppose that we are given a poset $\mathcal{P}=(\mathbb{N},\leq_p)$ and a sequence \vec{U} of intervals $(\{I^{\mathcal{P}}_{m_1,n_1},I^{\mathcal{P}}_{m_2,n_2},\ldots,I^{\mathcal{P}}_{m_k,n_k}\}$ where either $m_i\leq_p n_i$ and $m_i,n_i\in\mathbb{N}$ or $m_i\in\mathbb{N}$ and $n_i=\infty$. Then we say that w has an intervalembedding of \vec{U} into w relative to \mathcal{P} , denoted $\vec{U}\leq_{\mathcal{P}} w$ if there is a factor $w'=w'_1w'_2\ldots w'_k$ of w such that $w'_i\in I^{\mathcal{P}}_{m_i,n_i}$ for every $1\leq i\leq \ell$. We then define $S^{\mathcal{P}}(\vec{U})$ to be the set of all words $w=w_1\ldots w_n\in\mathbb{N}^*$ such that $n\geq k$, there is an interval embedding of \vec{U} into the suffix of w of length k, and there is no interval embedding of \vec{U} into $w_1\ldots w_{n-1}$. We set

$$\mathcal{S}^{\mathcal{P}}(\vec{U}, x, t) = \sum_{w \in S^{\mathcal{P}}(\vec{U})} wt(w),$$

and given two sequences \vec{U} and \vec{V} of intervals of \mathcal{P} , we say that \vec{U} is \mathcal{P} -Wilf equivalent to \vec{V} , written as $\vec{U} \sim_{\mathcal{P}} \vec{V}$, if $\mathcal{S}^{\mathcal{P}}(\vec{U}, x, t) = \mathcal{S}^{\mathcal{P}}(\vec{V}, x, t)$.

We show that under mild assumptions on \mathcal{P} , $S^{\mathcal{P}}(\vec{U})$ is accepted by a finite automaton and, hence, $S^{\mathcal{P}}(\vec{U}, x, t)$ is a rational function. We compute $S^{\mathcal{P}}(\vec{U}, x, t)$ for various special cases of \vec{U} and use these computations to establish various non-trivial Wilf-equivalences in this setting.

[1] S. Kitaev, J. Liese, J. Remmel, and B.E. Sagan, Rationality of generalized containments in words and Wilf equivalence, *Electron. J. Combin.*, **16(2)** (2009), R22

[2] T. Langley, J. Liese, and J. Remmel, Generating functions for Wilf equivalence under the generalized factor order, J. Integer Seq., 14 (2011), 11.4.2

This is joint work with Jeffrey Liese and Jeffrey Remmel.