Random Superpatterns

Martha Liendo (East Tennessee State University)

The number of preferential arrangements or rankings of length a on an alphabet of size a are given by the so-called ordered Bell numbers $B(a)=\sum_{k=1}^{a} k!S(a, k)$, where $S(a, k)$ are the Stirling numbers of the second kind. A word of length n that contains all preferential arrangements of length a is called a superpattern. It is known by joint work of Burstein, Hästö, and Mansour that the minimum length $n(a, a)$ of a superpattern satisfies $n(a, a) \leq a^{2}-2 a+4$ and it conjectured that $n(a, a)=a^{2}-2 a+4$. In this talk we will focus on alphabets of size 2 and 3 and consider a sequence X_{1}, X_{2}, \ldots of independent and identically distributed variables, each taking the value j with probability $1 / a ; a=2,3$. The distribution of the waiting time W till the sequence becomes a superpattern is obtained in closed form, as are the generating function and moments. For example, it is shown for $a=3$ that

$$
p(n)=P(W=n)=\frac{6}{3^{n}} \sum_{m=7}^{n}\left[(n-4)^{2}-2\right]\binom{n-2}{m-2} .
$$

This is joint work with Anant Godbole.

