Adin-Roichman-Mansour type identities

Sen-Peng Eu (National University of Kaohsiung, and Air Force Academy)

In [?], Adin and Roichman proved analytically the following identities, where $\mathsf{ldes}(\pi)$ denotes the position of the last descent. At the same time, Mansour [?] found a variation for $\mathfrak{S}_n(132)$.

Theorem 0.1 (Adin-Roichman). Let $\mathfrak{S}_n(321)$ be the set of 321-avoiding permutations in \mathfrak{S}_n . The following identities hold.

$$\sum_{\pi \in \mathfrak{S}_{2n+1}(321)} (-1)^{inv(\pi)} q^{ldes(\pi)} = \sum_{\pi \in \mathfrak{S}_n(321)} q^{2 \cdot ldes(\pi)}, \quad \text{for } n \ge 0,$$
$$\sum_{\pi \in \mathfrak{S}_{2n}(321)} (-1)^{inv(\pi)} q^{ldes(\pi)} = (1-q) \sum_{\pi \in \mathfrak{S}_n(321)} q^{2 \cdot ldes(\pi)}, \quad \text{for } n \ge 1.$$

Exhausting computer research shows that this "2n reduces to n" phenomenon is indeed rare. In this work, we would like to give several new A-R-M type identities, e.g:

Theorem 0.2. Let $\mathfrak{B}_n(321)$ be the set of 321-avoiding Baxter permutations in \mathfrak{S}_n . For $n \ge 0$, we have

$$\sum_{\pi \in \mathfrak{B}_{2n+1}(321)} (-1)^{\operatorname{maj}(\pi)} p^{\operatorname{fix}(\pi)} q^{\operatorname{des}(\pi)} = p \cdot \sum_{\pi \in \mathfrak{B}_n(321)} p^{2 \cdot \operatorname{fix}(\pi)} q^{2 \cdot \operatorname{des}(\pi)}.$$

Theorem 0.3. Let $Alt_n(321)$ be the set of 321-avoiding alternating permutations in \mathfrak{S}_n , and let $lead(\pi) = \pi_1$, the first entry of π . For all $n \geq 1$, we have

(i)
$$\sum_{\pi \in Alt_{4n+2}(321)} (-1)^{inv(\pi)} \cdot q^{lead(\pi)} = (-1)^{n+1} \sum_{\pi \in Alt_{2n}(321)} q^{2 \cdot lead(\pi)}$$

(ii)
$$\sum_{\pi \in Alt_{4n+1}(321)} (-1)^{inv(\pi)} \cdot q^{lead(\pi)} = (-1)^n \sum_{\pi \in Alt_{2n}(321)} q^{2 \cdot lead(\pi)}$$

(iii)
$$\sum_{\pi \in A \mid t_{4n}(321)} (-1)^{inv(\pi)} \cdot q^{lead(\pi)} = (-1)^{n+1} (1-q) \sum_{\pi \in A \mid t_{2n}(321)} q^{2(lead(\pi)-1)}$$

(iv)
$$\sum_{\pi \in A \mid t_{4n-1}(321)} (-1)^{inv(\pi)} \cdot q^{lead(\pi)} = (-1)^n (1-q) \sum_{\pi \in A \mid t_{2n}(321)} q^{2(lead(\pi)-1)}.$$

Theorem 0.4. Let $\mathcal{DS}_n(312)$ be the set of 312-avoiding double simsum permutations in \mathfrak{S}_n , then

(i)
$$\sum_{\pi \in \mathcal{DS}_{2n+2}(312)} (-1)^{\max(\pi)} \cdot q^{\text{fix}(\pi)} = (-1+q^2) \sum_{\pi \in \mathcal{DS}_n(312)} q^{2\text{fix}(\pi)}, \text{ for } n \ge 1.$$

(ii)
$$\sum_{\pi \in \mathcal{DS}_{2n-1}(312)} (-1)^{\operatorname{maj}(\pi)} \cdot q^{\operatorname{lead}(\pi)} = \frac{2}{q(1+q^2)} \sum_{\pi \in \mathcal{DS}_n(312)} q^{2\operatorname{lead}(\pi)}, \text{ for } n \ge 2.$$

These results are co-worked with T.S Fu, Y.J. Pan and P.L. Yan.

- R.M. Adin, Y. Roichman, Equidistribution and sign-balance on 321-avoiding permutations, Sémin. Loth. Combin. 51 (2004) B51d. ArXiv:math.CO/0304429.
- [2] T. Mansour, Equidistribution and sign-balance on 132-avoiding permutations, Séminaire Lotharingien de Combinatoire 51 (2004) B51e.