On pattern avoidance in matchings and involutions

Justin Troyka Davidson College, Davidson, North Carolina

Joint work with Jonathan J. Fang and Zachary Hamaker

2021 June 16

An involution is a permutation whose cycles are all 1-cycles and 2-cycles; equivalently, its diagram is fixed by reflection across the main diagonal.

= (12)(36)(4)(57)(8).

For involutions ρ and τ , we say τ **\Im-contains** ρ if ρ can be obtained from τ by some combination of these steps:

- (1) Deleting a 2-cycle and standardizing;
- (2) Deleting a 1-cycle (fixed point) and standardizing;
- (3) Deleting one entry from a 2-cycle (i, i + 1) and standardizing.

15372846 = (1)(25)(3)(47)(68) \Im -contains 1324 = (1)(23)(4):

- $\mathfrak{S}(\pi)$ is the set of permutations avoiding π .
- S(π) ∩ ℑ is the set of involutions avoiding π in the sense of permutation patterns (this is well-studied).
- Define ℑ(τ) to be the set of involutions that ℑ-avoid the involution τ.

65872143 ∉ $\mathfrak{S}(2143) \cap \mathfrak{I}$, but 65872143 ∈ $\mathfrak{I}(2143)$.

- $\mathfrak{S}(\tau) \cap \mathfrak{I} \subseteq \mathfrak{I}(\tau)$: if an involution \mathfrak{I} -contains τ , then it contains τ as a permutation.
- $\mathfrak{S}(\tau) \cap \mathfrak{I} = \mathfrak{I}(\tau)$ holds for some τ but not others.
 - $\mathfrak{S}(4321) \cap \mathfrak{I} = \mathfrak{I}(4321)$, and $\mathfrak{S}(3412) \cap \mathfrak{I} = \mathfrak{I}(3412)$.
 - $\blacktriangleright \mathfrak{S}(2143) \cap \mathfrak{I} \subsetneq \mathfrak{I}(2143).$

Theorem (Fang, Hamaker, & T. 2020): The following are equivalent: (i) $\mathfrak{S}(\tau) \cap \mathfrak{I} = \mathfrak{I}(\tau)$; (ii) $\tau \in \mathfrak{I}(12)$; (iii) τ has the form $\tau = \sigma \ominus \sigma^{-1}$ or $\tau = \sigma \ominus 1 \ominus \sigma^{-1}$.

For instance, $3412 = 12 \ominus 12$, so $\mathfrak{S}(\tau) \cap \mathfrak{I} = \mathfrak{I}(\tau)$.

Corollary (Fang, Hamaker, & T. 2020): $|\mathfrak{I}_n(\tau)|$ is either bounded above by an exponential function or bounded below by $\lfloor n/2 \rfloor!$.

• This is because $|\mathfrak{I}_n(12)| = \lfloor n/2 \rfloor!$.

τ	$ \mathfrak{I}_n(\tau) $
12	= (n/2)!
132	$\sim \frac{1}{2}e^{1/8} e^{\sqrt{n/2}} (n/2)!$
2143	$\sim \frac{1}{2} e^{-1/2} e^{\sqrt{2n}} (n/2)!$
123	$\sim \sqrt{\frac{2\pi}{27}n} \left(\frac{2}{\sqrt{3}}\right)^n (n/2)!$

(valid for even n)

Theorem (Fang, Hamaker, & T. 2020):

(a)
$$|\Im_{n}(321)| = |\Im_{n}(321) \cap \Im_{n}| = \binom{n}{\lfloor n/2 \rfloor}.$$

(b) $|\Im_{n}(213)| = |\Im_{n}(132)| = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n-k}{k}k!.$
(c) $|\Im_{n}(123)| = \sum_{k=1}^{n} \lfloor \frac{k}{2} \rfloor! \lfloor \frac{n-k}{2} \rfloor! \binom{n-\lfloor \frac{k}{2} \rfloor-1}{n-k}$

Remark: We prove that an involution is in $\Im(123)$ if and only if it is the union of two involutions in $\Im(12)$. This is analogous to the classical characterization of $\Im(123)$ as the set of permutations that are a union of two permutations in $\Im(12)$, i.e. decreasing subsequences.

Future directions:

• If $\tau \in \mathfrak{I}(12)$, understand the relationship between the growth rates of $\mathfrak{I}(\tau)$ and $\mathfrak{S}(\tau)$.

► If $\tau \notin \mathfrak{I}(12)$, understand $\lim_{n \to \infty} \left(\frac{1}{2} \right)$ between 1 and $\sqrt{2}$).

$$\left(\frac{|\mathfrak{I}_n(\tau)|}{\lfloor n/2 \rfloor!}\right)^{1/n}$$
 (it mu

(it must be

• Count $\Im(\tau)$ for $\tau \in \Im_4$.

• Count $\Im(1 \dots m)$ for $m \ge 4$.