On pattern avoidance in matchings and involutions

Justin Troyka
Davidson College, Davidson, North Carolina
Joint work with Jonathan J. Fang and Zachary Hamaker

2021 June 16

An involution is a permutation whose cycles are all 1-cycles and 2-cycles; equivalently, its diagram is fixed by reflection across the main diagonal.

For involutions ρ and τ, we say $\tau \mathfrak{J}$-contains ρ if ρ can be obtained from τ by some combination of these steps:
(1) Deleting a 2-cycle and standardizing;
(2) Deleting a 1-cycle (fixed point) and standardizing;
(3) Deleting one entry from a 2-cycle ($i, i+1$) and standardizing.
$15372846=(1)(25)(3)(47)(68) \Im$-contains $1324=(1)(23)(4):$

- $\mathcal{S}(\pi)$ is the set of permutations avoiding π.
- $\subseteq(\pi) \cap \mathfrak{J}$ is the set of involutions avoiding π in the sense of permutation patterns (this is well-studied).
- Define $\mathfrak{I}(\tau)$ to be the set of involutions that \mathfrak{J}-avoid the involution τ.

$65872143 \notin \Im(2143) \cap \mathfrak{J}$, but $65872143 \in \mathfrak{J}(2143)$.
- $\mathfrak{S}(\tau) \cap \mathfrak{I} \subseteq \mathfrak{I}(\tau)$: if an involution \mathfrak{I}-contains τ, then it contains τ as a permutation.
- $\mathfrak{S}(\tau) \cap \mathfrak{I}=\mathfrak{I}(\tau)$ holds for some τ but not others.
- $\mathfrak{G}(4321) \cap \mathfrak{I}=\mathfrak{J}(4321)$, and $\mathfrak{S}(3412) \cap \mathfrak{I}=\mathfrak{J}(3412)$.
- $\subseteq(2143) \cap \Im \varsubsetneqq \Im(2143)$.

Theorem (Fang, Hamaker, \& T. 2020): The following are equivalent:
(i) $\mathfrak{S}(\tau) \cap \mathfrak{I}=\mathfrak{J}(\tau)$;
(ii) $\tau \in \mathfrak{J}(12)$;
(iii) τ has the form $\tau=\sigma \ominus \sigma^{-1}$ or $\tau=\sigma \ominus 1 \ominus \sigma^{-1}$.

For instance, $3412=12 \ominus 12$, so $\mathfrak{S}(\tau) \cap \mathfrak{J}=\mathfrak{J}(\tau)$.

Corollary (Fang, Hamaker, \& T. 2020): $\left|\Im_{n}(\tau)\right|$ is either bounded above by an exponential function or bounded below by $\lfloor n / 2\rfloor$!.

- This is because $\left|\Im_{n}(12)\right|=\lfloor n / 2\rfloor$!.

τ	$\left\|\Im_{n}(\tau)\right\|$
12	$=(n / 2)!$
132	$\sim \frac{1}{2} e^{1 / 8} e^{\sqrt{n / 2}}(n / 2)!$
2143	$\sim \frac{1}{2} e^{-1 / 2} e^{\sqrt{2 n}}(n / 2)!$
123	$\sim \sqrt{\frac{2 \pi}{27} n}\left(\frac{2}{\sqrt{3}}\right)^{n}(n / 2)!$

(valid for even \mathfrak{n})

Theorem (Fang, Hamaker, \& T. 2020):
(a) $\left|\Im_{n}(321)\right|=\left|\Im_{n}(321) \cap \Im_{n}\right|=\binom{n}{\lfloor n / 2\rfloor}$.
(b) $\left|\Im_{n}(213)\right|=\left|\Im_{n}(132)\right|=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n-k}{k} k!$.
(c) $\left|\Im_{n}(123)\right|=\sum_{k=1}^{n}\left\lfloor\frac{k}{2}\right\rfloor!\left\lfloor\frac{n-k}{2}\right\rfloor!\binom{n-\left\lfloor\frac{k}{2}\right\rfloor-1}{n-k}$.

Remark: We prove that an involution is in $\mathfrak{J}(123)$ if and only if it is the union of two involutions in $\mathfrak{J}(12)$. This is analogous to the classical characterization of $\subseteq(123)$ as the set of permutations that are a union of two permutations in $\mathfrak{\Im}(12)$, i.e. decreasing subsequences.

Future directions:

- If $\tau \in \mathfrak{J}(12)$, understand the relationship between the growth rates of $\mathfrak{J}(\tau)$ and $\mathfrak{S}(\tau)$.
- If $\tau \notin \mathfrak{I}(12)$, understand $\lim _{n \rightarrow \infty}\left(\frac{\mid \Im_{n}(\tau)}{\lfloor n / 2\rfloor!}\right)^{1 / n}$ (it must be between 1 and $\sqrt{2}$).
- Count $\mathfrak{J}(\tau)$ for $\tau \in \mathfrak{J}_{4}$.
- Count $\mathfrak{J}(1 \ldots m)$ for $m \geqslant 4$.

