An Algorithm for Counting The Admissible Orderings of a Pinnacle Set

Alexander Sietsema

Joint work with: Rachel Domagalski, Jinting Liang, Quinn Minnich, Dr. Bruce Sagan, and Jamie Schmidt

Michigan State University
June 16, 2021

MICHIGAN STATE
 U N IVERS I TY

Pinnacle sets and pinnacle orderings

- The pinnacle set of a permutation $\pi \in S_{n}$ is
$\operatorname{Pin} \pi=\left\{\pi_{i} \mid \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\}$.

Pinnacle sets and pinnacle orderings

- The pinnacle set of a permutation $\pi \in S_{n}$ is
$\operatorname{Pin} \pi=\left\{\pi_{i} \mid \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\}$.
- Ex: $\pi=13254, \operatorname{Pin} \pi=\{3,5\}$

Pinnacle sets and pinnacle orderings

- The pinnacle set of a permutation $\pi \in S_{n}$ is
$\operatorname{Pin} \pi=\left\{\pi_{i} \mid \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\}$.
- Ex: $\pi=13254, \operatorname{Pin} \pi=\{3,5\}$
- A permutation σ of a pinnacle set S is called an admissible ordering if there is a $\pi \in S_{n}$ with $\operatorname{Pin} \pi=S$ and the pinnacles of π occur in the same order as they do in σ.

Pinnacle sets and pinnacle orderings

- The pinnacle set of a permutation $\pi \in S_{n}$ is
$\operatorname{Pin} \pi=\left\{\pi_{i} \mid \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\}$.
- Ex: $\pi=13254, \operatorname{Pin} \pi=\{3,5\}$
- A permutation σ of a pinnacle set S is called an admissible ordering if there is a $\pi \in S_{n}$ with Pin $\pi=S$ and the pinnacles of π occur in the same order as they do in σ.
- Not every ordering of an admissible pinnacle set is itself an admissible ordering. We define $\mathcal{O}(S)$ to be the set of admissible orderings of a pinnacle set S.

Pinnacle sets and pinnacle orderings

- The pinnacle set of a permutation $\pi \in S_{n}$ is
$\operatorname{Pin} \pi=\left\{\pi_{i} \mid \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\}$.
- Ex: $\pi=13254, \operatorname{Pin} \pi=\{3,5\}$
- A permutation σ of a pinnacle set S is called an admissible ordering if there is a $\pi \in S_{n}$ with $\operatorname{Pin} \pi=S$ and the pinnacles of π occur in the same order as they do in σ.
- Not every ordering of an admissible pinnacle set is itself an admissible ordering. We define $\mathcal{O}(S)$ to be the set of admissible orderings of a pinnacle set S.
- Ex: If $S=\{3,5,7\}$ then $\sigma=537$ is an admissible ordering as witnessed by $\pi=4513276$. However, $\tau=375$ is not admissible. Because pinnacles must have elements on either side, the pinnacles must appear in positions 2,4 and 6 in the given order. Since for 6 not to be a pinnacle, it must be directly to the left or right of 7 . Since 6 is larger than both 3 and 5, either placement will force the other adjacent position not to be a pinnacle.

Counting admissible pinnacle orderings

- We can count admissible pinnacle orderings of an admissible pinnacle set S using the formula

$$
\# \mathcal{O}(S)=\sum_{B \subseteq D^{\prime}:|B|=d-1} \delta_{B \cup\left\{1,1,1_{r}\right\}} \prod_{i=0}^{d-2}\left(d+1-i-r_{d-1-i}\right) .
$$

Counting admissible pinnacle orderings

- We can count admissible pinnacle orderings of an admissible pinnacle set S using the formula

$$
=\sum_{B \subseteq D^{\prime}:|B|=d-1}
$$

- The sum deals with (as in Quinn's talk) the concept of dales. A dale is the set of all elements between two pinnacles that are smaller than both pinnacles. We sum over every possible dale set, which corresponds to every cyclic ordering of the pinnacle set.

Counting admissible pinnacle orderings

- We can count admissible pinnacle orderings of an admissible pinnacle set S using the formula

$$
=\sum_{B \subseteq D^{\prime}:|B|=d-1} \quad \prod_{i=0}^{d-2}\left(d+1-i-r_{d-1-i}\right) .
$$

- The sum deals with (as in Quinn's talk) the concept of dales. A dale is the set of all elements between two pinnacles that are smaller than both pinnacles. We sum over every possible dale set, which corresponds to every cyclic ordering of the pinnacle set.
- The product counts the number of cyclic orderings of the pinnacle set that have dales containing those in B.

Counting admissible pinnacle orderings

- We can count admissible pinnacle orderings of an admissible pinnacle set S using the formula

$$
\# \mathcal{O}(S)=\sum_{B \subseteq D^{\prime}:|B|=d-1} \delta_{B \cup\{1,1,1\}} \prod_{i=0}^{d-2}\left(d+1-i-r_{d-1-i}\right) .
$$

- The sum deals with (as in Quinn's talk) the concept of dales. A dale is the set of all elements between two pinnacles that are smaller than both pinnacles. We sum over every possible dale set, which corresponds to every cyclic ordering of the pinnacle set.
- The product counts the number of cyclic orderings of the pinnacle set that have dales containing those in B.
- The delta term is 1 if a given ordering is admissible, and 0 if a given ordering is not admissible.

Counting admissible pinnacle orderings

- We can count admissible pinnacle orderings of an admissible pinnacle set S using the formula

$$
\# \mathcal{O}(S)=\sum_{B \subseteq D^{\prime}:|B|=d-1} \delta_{B \cup\left\{1,1_{r}\right\}} \prod_{i=0}^{d-2}\left(d+1-i-r_{d-1-i}\right) .
$$

- The sum deals with (as in Quinn's talk) the concept of dales. A dale is the set of all elements between two pinnacles that are smaller than both pinnacles. We sum over every possible dale set, which corresponds to every cyclic ordering of the pinnacle set.
- The product counts the number of cyclic orderings of the pinnacle set that have dales containing those in B.
- The delta term is 1 if a given ordering is admissible, and 0 if a given ordering is not admissible.
- In addition to the formula above, we have found an improved formula that sums over compositions rather than the B subsets.

References

[1] Davis, Robert and Nelson, Sarah A. and Kyle Petersen, T. and Tenner, Bridget E. The pinnacle set of a permutation. Discrete Mathematics, 341(11):3249-3270, 2018.
[2] Rusu, Irina and Tenner, Bridge Eileen. Admissible Pinnacle Orderings. arXiv:2001.08185 [math.CO], 2020
[3] Diaz-Lopez, Alexander and Harris, Pamela E. and Huang, Isabella and Insko, Erik and Nilsen, Lars. A formula for enumerating permutations with a fixed pinnacle set. Discrete Mathematics, 344(6):112375, 2021
[4] Domagalski, Rachel and Liang, Jinting and Minnich, Quinn and Sagan, Bruce E. and Schmidt, Jamie and Sietsema, Alexander. Pinnacle Set Properties. arXiv:2105.10388 [math.CO], 2021

Thank you!

