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Pinnacle sets and pinnacle orderings

I The pinnacle set of a permutation π ∈ Sn is
Pinπ = {πi | πi−1 < πi > πi+1}.

I Ex: π = 13254, Pinπ = {3, 5}

I A permutation σ of a pinnacle set S is called an admissible ordering
if there is a π ∈ Sn with Pinπ = S and the pinnacles of π occur in
the same order as they do in σ.

I Not every ordering of an admissible pinnacle set is itself an
admissible ordering. We define O(S) to be the set of admissible
orderings of a pinnacle set S .

I Ex: If S = {3, 5, 7} then σ = 537 is an admissible ordering as
witnessed by π = 4513276. However, τ = 375 is not admissible.
Because pinnacles must have elements on either side, the pinnacles
must appear in positions 2, 4 and 6 in the given order. Since for 6
not to be a pinnacle, it must be directly to the left or right of 7.
Since 6 is larger than both 3 and 5, either placement will force the
other adjacent position not to be a pinnacle.
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Counting admissible pinnacle orderings

I We can count admissible pinnacle orderings of an admissible
pinnacle set S using the formula

#O(S) =
∑

B⊆D′: |B|=d−1

δB∪{1l ,1r}

d−2∏
i=0

(d + 1− i − rd−1−i ) .
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I The sum deals with (as in Quinn’s talk) the concept of dales. A dale
is the set of all elements between two pinnacles that are smaller than
both pinnacles. We sum over every possible dale set, which
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I In addition to the formula above, we have found an improved
formula that sums over compositions rather than the B subsets.
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Thank you!
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