The Generating Function of the Statistic des for Cyclic Permutations which avoid the patterns
[1324] and [1423]

Jamie Schmidt

Joint work with: Rachel Domagalski, Jinting Liang, Quinn Minnich, Dr. Bruce Sagan, and Alexander Sietsema

Michigan State University
June 16, 2021

Cyclic Permutations

Let's quickly review the necessary definitions.

- A cyclic permutation is a permutation where we let the end "wrap around" to the beginning. We denote this with brackets, like [123] instead of 123.
- Ex: The only two cyclic permutations of length 3 are [123] and [132].
- We can consider pattern avoidance in this fashion.
- Ex: In the linear version, $\pi=21534$ avoided 321. If we consider [π] as a cyclic permutation, it no longer does - [π] contains [541] as a copy of [321].
- We usually standardize our cyclic permutations to begin with 1 .
- We say that the set of permutations in the symmetric group S_{n} that avoid a particular set of patterns P is $\mathrm{Av}_{n}(P)$.

Cyclic Statistics

- A cyclic descent is a descent in a cyclic permutation.
- Ex: The cyclic permutation [1736425] has cyclic descents which start at the numbers $7,6,4$, and 5.
- We denote the number of cyclic descents in a cyclic permutation $[\sigma]$ as cdes[$\sigma]$.

The Theorem

Theorem

The generating function for the number of cyclic permutations on $[n]=\{1,2,3, \ldots, n\}$ which avoid the patterns [1324] and [1423] is

$$
\sum_{n([1324],[1423])} x^{c \operatorname{des}[\sigma]}=x(x+1)^{n-2}
$$

For simplicity's sake, we will say that $A v_{n}=A v_{n}([1324],[1423])$.

- We will proceed by induction.
- The base case for $n=2$ is simple.
- But before we go on, we need to characterize the avoidance class.

The Theorem

Theorem

Every permutation in $A v_{n-1}$ produces two permutations in $A v_{n}$ through a method where n is inserted either before or after $n-1$, and no other permutations are possible.

- Because 3 and 4 are not adjacent in either pattern, inserting n next to $(n-1)$ for any cyclic permutation in $A v_{n-1}$ cannot create either pattern.
- If inserting n did somehow create a pattern, we would also have a copy of that pattern with $(n-1)$ substituted for n.
- Moreover, we if we insert n at a position not next to $(n-1)$, then we create a cyclic permutation of the form $\left[\pi^{\prime}\right]=1 \ldots(n) \ldots x \ldots(n-1)$ or $\left[\pi^{\prime}\right]=1 \ldots(n-1) \ldots x \ldots(n)$ for at least one x.
- Then we have a copy of 1423 given by $1(n) \times(n-1)$ or a copy of 1324 given by $1(n-1) x(n)$, respectively.

The Theorem

Theorem

The generating function for the number of cyclic permutations on [n] which avoid the patterns [1324] and [1423] is

$$
\sum_{[\sigma] \in A v_{n}} x^{c d e s[\sigma]}=x(x+1)^{n-2}
$$

- Inserting n before ($n-1$) will increase the number of descents in the cyclic permutation by one, as the numbers to the left and right of ($n-1$) are both less than it, while inserting n after $(n-1)$ will keep the number of descents the same.
- The generating function follows, and the proof is complete.

Further Work in Cyclic Permutations

- We have also proven many other generating functions, and derived a single bivariate generating function for cdes and cpk. Check out our paper to see them!
- Other work includes results for counting avoidance sets for all doubles, triples, and quadruples of cyclic patterns of length 4, analysing cyclic shuffle-compatibility, and (coming soon!) counting pinnacle sets, their admissible orderings, and the permutations that have them.

Acknowledgements and References

You can find our cyclic pattern containment paper at https://arxiv.org/abs/2106.02534, or at this QR code:

Thanks for listening!

