Hardness of C-Permutation Pattern Matching

Vít Jelínek Michal Opler Jakub Pekárek

Charles University in Prague

June 15, 2021

Pattern matching

PERMUTATION PATTERN MATCHING (PPM)Input:Permutations π of size k and τ of size n.Question:Is π contained in τ ?

A pattern 213 is contained in a permutation 421365.

Theorem (Bose, Buss and Lubiw, 1998) PERMUTATION PATTERN MATCHING *is NP-complete*.

Known cases

- Av(21)-PPM polynomial (trivial)
- Av(132)-PPM polynomial (Bose, Buss and Lubiw, 1998),
- ► Av(321)-PPM polynomial (Guillemot and Vialette, 2009),
- Av(3412, 2143)-PPM polynomial (Albert et al., 2016),
- ► Av(4321)-PPM NP-complete (Jelínek and Kynčl, 2017), and
- $Av(\sigma)$ -PPM with $|\sigma| \ge 10$ NP-complete (Jelínek and Kynčl, 2017).

Grid classes

Definition

A $k \times \ell$ matrix \mathcal{M} of permutation classes is a gridding matrix. The grid class of \mathcal{M} , denoted by $\operatorname{Grid}(\mathcal{M})$, is a class of permutations that can be partitioned, by $\ell - 1$ horizontal and k - 1 vertical cuts, into a $k \times \ell$ array of cells, where the cell in the *i*-th column and *j*-th row induces a pattern from $\mathcal{M}_{i,j}$.

Definition

The cell graph of \mathcal{M} is a graph whose vertices are the cells of \mathcal{M} that contain an infinite class, with two vertices being adjacent if they share a row or a column of \mathcal{M} and all cells between them are empty.

$$\mathcal{M} = \begin{pmatrix} \operatorname{Av}(132) & - & \operatorname{Av}(21) \\ & & \operatorname{Av}(321) & - \operatorname{Av}(12) \end{pmatrix}$$

Definition

A class C is monotone-griddable if $C \subseteq Grid(\mathcal{M})$ for $\mathcal{M} \in \{ \mathbb{Z}, \mathbb{N}, \emptyset \}^{k \times \ell}$.

The hardness reduction

Definition

A class C has the \mathcal{D} -rich path property for a class \mathcal{D} , if there exists $\epsilon > 0$ such that for every k, C contains a grid subclass whose cell graph is a path of length k with no three cells in the same row or column and with at least $\epsilon \cdot k \mathcal{D}$ -entries.

Example

The class Av(4321) has the Av(321)-rich path property.

Theorem

Let C be a permutation class with the D-rich path property for a non-monotone-griddable class D. Then C-PPM is NP-complete.

Applying the reduction

Corollary

If \mathcal{M} is a gridding matrix such that $G_{\mathcal{M}}$ contains a cycle with no three vertices in the same row or column and one entry equal to a non-monotone-griddable class \mathcal{D} then $Grid(\mathcal{M})$ -PPM is NP-complete

Main results

Theorem

If σ is a permutation of length at least 4 that is not symmetric to any of 3412, 3142, 4213, 4123 or 41352, then Av(σ)-PPM is NP-complete.

Theorem

C-PPM is polynomial-time solvable for any monotone-griddable class C.

Question

What about $Av(\sigma)$ -PPM for $\sigma \in \{3412, 3142, 4213, 4123, 41352\}$?

Thank you!