Hardness of \mathcal{C}-Permutation Pattern Matching

Vít Jelínek Michal Opler Jakub Pekárek
Charles University in Prague

June 15, 2021

Pattern matching

```
Permutation Pattern Matching (PPM)
    Input: Permutations }\pi\mathrm{ of size }k\mathrm{ and }\tau\mathrm{ of size n.
    Question: Is }\pi\mathrm{ contained in }\tau\mathrm{ ?
```

A pattern 213 is contained in a permutation 421365.

Theorem (Bose, Buss and Lubiw, 1998)
Permutation Pattern Matching is NP-complete.

Pattern matching restricted

\mathcal{C}-Permutation Pattern Matching (\mathcal{C}-PPM)
Input: \quad Permutations $\pi \in \mathcal{C}$ of size k and $\pi \in \mathcal{C}$ of size n.
Question: Is π contained in τ ?

Known cases

- $\operatorname{Av}(21)$-PPM - polynomial (trivial)
- Av(132)-PPM - polynomial (Bose, Buss and Lubiw, 1998),
- Av(321)-PPM - polynomial (Guillemot and Vialette, 2009),
- $\operatorname{Av}(3412,2143)-\mathrm{PPM}$ - polynomial (Albert et al., 2016),
- Av(4321)-PPM - NP-complete (Jelínek and Kynčl, 2017), and
- $\operatorname{Av}(\sigma)$-PPM with $|\sigma| \geq 10$ - NP-complete (Jelínek and Kynčl, 2017).

Grid classes

Definition

A $k \times \ell$ matrix \mathcal{M} of permutation classes is a gridding matrix. The grid class of \mathcal{M}, denoted by $\operatorname{Grid}(\mathcal{M})$, is a class of permutations that can be partitioned, by $\ell-1$ horizontal and $k-1$ vertical cuts, into a $k \times \ell$ array of cells, where the cell in the i-th column and j-th row induces a pattern from $\mathcal{M}_{i, j}$.

Definition

The cell graph of \mathcal{M} is a graph whose vertices are the cells of \mathcal{M} that contain an infinite class, with two vertices being adjacent if they share a row or a column of \mathcal{M} and all cells between them are empty.

$$
\mathcal{M}=\left(\begin{array}{cc}
\operatorname{Av}(132) & \\
& \operatorname{Av}(321)-\operatorname{Av}(21) \\
& \operatorname{Av}(2)
\end{array}\right)
$$

Definition

A class \mathcal{C} is monotone-griddable if $\mathcal{C} \subseteq \operatorname{Grid}(\mathcal{M})$ for $\mathcal{M} \in\{\square, \Delta, \emptyset\}^{k \times \ell}$.

The hardness reduction

Definition

A class \mathcal{C} has the \mathcal{D}-rich path property for a class \mathcal{D}, if there exists $\epsilon>0$ such that for every k, \mathcal{C} contains a grid subclass whose cell graph is a path of length k with no three cells in the same row or column and with at least $\epsilon \cdot k \mathcal{D}$-entries.

Example

The class $\operatorname{Av}(4321)$ has the $\operatorname{Av}(321)$-rich path property.

Theorem

Let \mathcal{C} be a permutation class with the \mathcal{D}-rich path property for a non-monotone-griddable class \mathcal{D}. Then \mathcal{C}-PPM is NP-complete.

Applying the reduction

Corollary

If \mathcal{M} is a gridding matrix such that $G_{\mathcal{M}}$ contains a cycle with no three vertices in the same row or column and one entry equal to a non-monotone-griddable class \mathcal{D} then $\operatorname{Grid}(\mathcal{M})-\mathrm{PPM}$ is $N P$-complete

$$
\begin{aligned}
\operatorname{Av}(14523) \supseteq & \frac{\square}{\operatorname{Av}(132)}, \quad \operatorname{Av}(24513) \supseteq, \\
& \operatorname{Av}(32154,42513) \supseteq \frac{\square}{\operatorname{Av}(231)}, \\
\hline \operatorname{Av}(321) & \square
\end{aligned}
$$

Main results

Theorem

If σ is a permutation of length at least 4 that is not symmetric to any of 3412, 3142, 4213, 4123 or 41352, then $\operatorname{Av}(\sigma)-\mathrm{PPM}$ is $N P$-complete.

Theorem

\mathcal{C}-PPM is polynomial-time solvable for any monotone-griddable class \mathcal{C}.

Question

What about $\operatorname{Av}(\sigma)$-PPM for $\sigma \in\{3412,3142,4213,4123,41352\} ?$

Thank you!

