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Pinnacle Sets

Definition

If π = π1 . . . πn is a permutation in the symmetric group Sn then its
pinnacle set is

Pin π = {πi | πi−1 < πi > πi+1}.

Ex: n = 9
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Ex: n = 9

π = 2 9 7 4 1 8 3 5 6
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Question

For a fixed n, how many permutations have a given pinnacle set?
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Pinnacle Sets

Definition

If π = π1 . . . πn is a permutation in the symmetric group Sn then its
pinnacle set is

Pin π = {πi | πi−1 < πi > πi+1}.

Ex: n = 9

π = 2 9 7 4 1 8 3 5 6
So Pin π = {8, 9}

Question

For a fixed n, how many permutations have a given pinnacle set?

In 2018, Davis et al. gave an explicit formula for pinnacle sets containing
at most two pinnacles, but most of their methods for larger pinnacle sets
were recursive. Then in 2021, Diaz-Lopez et al. found a non-recursive
formula for any number of pinnacles, but it was still very slow for
permutations in which the pinnacles were far apart.
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Notation

Fix n > 0 and let Sn be the symmetric group on n elements. Suppose we
have a pinnacle set S = {s1 < s2 < . . . < sd} in Sn. We use the
convention s0 = 0 and sd+1 = n + 1 and for 0 ≤ i ≤ d let

ni = si+1 − si − 1.

The ni can be thought of as the number of non-pinnacle values between
the pinnacles. For example, if n = 6 and S = {3, 5}, then n0 = 2, n1 = 1,
and n2 = 1

One way to generate permutations having S as a pinnacle set is to fix an
ordering of the pinnacles and then insert the non-pinnacles between
them.
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The diagram above shows a possible ordering of the pinnacle values and
the diagonal lines between them represent where the non-pinnacles may
be placed without becoming pinnacles themselves.
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The diagram above shows a possible ordering of the pinnacle values and
the diagonal lines between them represent where the non-pinnacles may
be placed without becoming pinnacles themselves.

Each solid triangle is called a dale. Each dale has a rank derived from the
smaller pinnacle that bounds it, and also a “l” or “r” designation based
on whether the dale is to the left or right of the smaller pinnacle.
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Each dale must contain at least one element in order to guarantee the si
all become pinnacles. Therefore, we use the principle of inclusion and
exclusion to ensure all dales end up non-empty, and to do this we need to
be able to refer to arbitrary possible subsets of dales.
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Each dale must contain at least one element in order to guarantee the si
all become pinnacles. Therefore, we use the principle of inclusion and
exclusion to ensure all dales end up non-empty, and to do this we need to
be able to refer to arbitrary possible subsets of dales.
Let D = {1l , 1r , 2l , 2r , . . . , dl , dr} be the set of all possible dales with
partial order 1l < 1r < 2l < . . . < dl < dr . For example, if there were 4
pinnacle values, then D = {1l , 1r , 2l , 2r , 3l , 3r , 4l , 4r}
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Given a B ⊂ D with |B| = b, we define rj = the rank of the jth smallest
element of B for 1 ≤ j ≤ b.
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Given a B ⊂ D with |B| = b, we define rj = the rank of the jth smallest
element of B for 1 ≤ j ≤ b.

For example, if B = {1l , 3l , 3r , 4r} ⊂ D, then
r1 = 1, r2 = 3, r3 = 3, r4 = 4
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Additionally, given a B ⊂ D with |B| = b, we define bi = the number of
elements in B with rank at least i .
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Additionally, given a B ⊂ D with |B| = b, we define bi = the number of
elements in B with rank at least i .

For example, if B = {1l , 3l , 3r , 4r} ⊂ D, then
b1 = 4, b2 = 3, b3 = 3, b4 = 1
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A New Formula

Recall:
I D = {1l , 1r , 2l , 2r , . . . , dl , dr}.
I ni = si+1 − si − 1.

I rj = the rank of the jth smallest element of B ⊂ D.

I bi = the number of elements in B ⊂ D with rank at least i .

Theorem

For n > 0, the number of permutations π ∈ Sn with pinnacle set
S = {s1 < s2 < . . . < sd} is given by the following formula.

2n−2d−1
∑

B⊆D: |B|≤d

(−1)b(d − b)!

(
b−1∏
i=0

(d + 1− i − rb−i )

)(
d∏

i=0

(d + 1− i − bi+1)ni

)
.

There is also an improved version of this formula that replaces the
subsets B with certain compositions, ultimately resulting in fewer terms
to sum over. Additionally, just this month, Falque, Novelli, and Thibon
released a recursive algorithm which is a low degree polynomial in both n
and d .
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Thank You!

Thank you!
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