Pattern Avoidance in Cyclic Permutations

Jinting Liang

(Joint work with Dr. Bruce Sagan, Rachel Domagalski, Quinn Minnich, Jamie Schmidt and Alexander Sietsema)

Permutation Patterns 2021
June 16, 2021

MICHIGAN STATE
U N I V E R S I T Y

Cyclic Permutations

- A cyclic permutation is an equivalence class of linear permutations under rotation.

$$
[\pi]=\left\{\pi_{1} \pi_{2} \ldots \pi_{n}, \pi_{2} \ldots \pi_{n} \pi_{1}, \ldots, \pi_{n} \pi_{1} \ldots \pi_{n-1}\right\} .
$$

Cyclic Permutations

- A cyclic permutation is an equivalence class of linear permutations under rotation.

$$
[\pi]=\left\{\pi_{1} \pi_{2} \ldots \pi_{n}, \pi_{2} \ldots \pi_{n} \pi_{1}, \ldots, \pi_{n} \pi_{1} \ldots \pi_{n-1}\right\}
$$

- Ex: For example, $[1425]=\{1425,4251,2514,5142\}=[5142]$.

Both [125] and [542] are subsequences.

Pattern Containment

- We say that $[\pi]$ contains a copy of $[\sigma]$ if $[\pi]$ has a subsequence of the same length and the same relative order as $[\sigma] ;[\pi]$ avoids the pattern $[\sigma]$ if no subsequence of $[\pi]$ has the same relative order as $[\sigma]$.

Pattern Containment

- We say that $[\pi]$ contains a copy of $[\sigma]$ if $[\pi]$ has a subsequence of the same length and the same relative order as $[\sigma] ;[\pi]$ avoids the pattern $[\sigma]$ if no subsequence of $[\pi]$ has the same relative order as $[\sigma]$.
- Ex: $[\pi]=[53421]$ contains $[\sigma]=[132]$ as a pattern because the subsequences [254] (among others) has the same relative order as $[\sigma]$.

Pattern Avoidance

- There are only six cyclic permutations of length 4; Callan [1] showed that:

$$
\begin{aligned}
& \# \operatorname{Av}_{n}([1234])=\# \operatorname{Av}_{n}([1432])=2^{n}+1-2 n-\binom{n}{3} ; \\
& \# \operatorname{Av}_{n}([1324])=\# \operatorname{Av}_{n}([1423])=F_{2 n-3}(\text { Fibonacci numbers }) ; \\
& \# \mathrm{Av}_{n}([1342])=\# \mathrm{Av}_{n}([1243])=2^{n-1}-(n-1) .
\end{aligned}
$$

Pattern Avoidance

- There are only six cyclic permutations of length 4; Callan [1] showed that:

$$
\begin{aligned}
& \# \operatorname{Av}_{n}([1234])=\# \operatorname{Av}_{n}([1432])=2^{n}+1-2 n-\binom{n}{3} \\
& \# \operatorname{Av}_{n}([1324])=\# \operatorname{Av}_{n}([1423])=F_{2 n-3}(\text { Fibonacci numbers }) ; \\
& \# \mathrm{Av}_{n}([1342])=\# \operatorname{Av}_{n}([1243])=2^{n-1}-(n-1)
\end{aligned}
$$

- We can also consider permutations avoiding a set of patterns. Denote the set of cyclic permutations of length n that avoid a set of patterns S as $\mathrm{Av}_{n}(S)$.

Pattern Avoidance

- There are only six cyclic permutations of length 4; Callan [1] showed that:

$$
\begin{aligned}
& \# A v_{n}([1234])=\# \operatorname{Av}_{n}([1432])=2^{n}+1-2 n-\binom{n}{3} \\
& \# \operatorname{Av}_{n}([1324])=\# \operatorname{Av}_{n}([1423])=F_{2 n-3}(\text { Fibonacci numbers }) ; \\
& \# \operatorname{Av}_{n}([1342])=\# \operatorname{Av}_{n}([1243])=2^{n-1}-(n-1)
\end{aligned}
$$

- We can also consider permutations avoiding a set of patterns. Denote the set of cyclic permutations of length n that avoid a set of patterns S as $\mathrm{Av}_{n}(S)$.
- Our work is on counting the avoidance sets for sets of length 4 patterns.

Our Results (pairs)

- There are 15 pairs of cyclic patterns of length 4. From trivial Wilf equivalences, we may reduce to counting avoidance of the pairs:
- $\# \operatorname{Av}_{n}([1234],[1243])=2(n-2)$ for $n>2$.
- $\# \operatorname{Av}_{n}([1234],[1324])=2(n-2)$ for $n>2$.
- $\# \operatorname{Av}_{n}([1234],[1423])=1+\binom{n-1}{2}$ for all n.
- \# $\operatorname{Av}_{n}([1243],[1324])=1+\binom{n-1}{2}$ for all n.
- $\# \operatorname{Av}_{n}([1324],[1423])=2^{n-2}$ for $n>1$.
- $\# \operatorname{Av}_{n}([1243],[1342])=4$ for $n>3$.
- $\# \operatorname{Av}_{n}([1234],[1432])=0$ for $n>5$.

Our Results (pairs)

- There are 15 pairs of cyclic patterns of length 4. From trivial Wilf equivalences, we may reduce to counting avoidance of the pairs:
- $\# \mathrm{Av}_{n}([1234],[1243])=2(n-2)$ for $n>2$.
- $\# \mathrm{Av}_{n}([1234],[1324])=2(n-2)$ for $n>2$.
- $\# \operatorname{Av}_{n}([1234],[1423])=1+\binom{n-1}{2}$ for all n.
- \# $\operatorname{Av}_{n}([1243],[1324])=1+\binom{n-1}{2}$ for all n.
- $\# \mathrm{Av}_{n}([1324],[1423])=2^{n-2}$ for $n>1$.
- $\# \operatorname{Av}_{n}([1243],[1342])=4$ for $n>3$.
- $\# \operatorname{Av}_{n}([1234],[1432])=0$ for $n>5$.

Other Results

Theorem (A Cyclic Variant of the Erdős-Szekeres Theorem)

A cyclic sequence with length at least rs +2 must contain an increasing subsequence of length $r+2$ or a decreasing subsequence of length $s+2$.

Other Results

Theorem (A Cyclic Variant of the Erdős-Szekeres Theorem)

A cyclic sequence with length at least rs +2 must contain an increasing subsequence of length $r+2$ or a decreasing subsequence of length $s+2$.

- In particular, if $r=2, s=2$,

$$
\# A v_{n}([1234],[1432])=0 \text { for } n>5 .
$$

Other Results

Theorem (A Cyclic Variant of the Erdős-Szekeres Theorem)

A cyclic sequence with length at least $r s+2$ must contain an increasing subsequence of length $r+2$ or a decreasing subsequence of length $s+2$.

- In particular, if $r=2, s=2$,

$$
\# A v_{n}([1234],[1432])=0 \text { for } n>5 .
$$

- We have also proven results for avoidance sets for triples and quadruples of cyclic patterns of length 4.

Other Results

Theorem (A Cyclic Variant of the Erdős-Szekeres Theorem)

A cyclic sequence with length at least rs +2 must contain an increasing subsequence of length $r+2$ or a decreasing subsequence of length $s+2$.

- In particular, if $r=2, s=2$,

$$
\# A v_{n}([1234],[1432])=0 \text { for } n>5 .
$$

- We have also proven results for avoidance sets for triples and quadruples of cyclic patterns of length 4.
- Other work includes discussing generating functions for cyclic permutation statistics.

References

David Callan.
Pattern avoidance in cyclic permutations. 2002.

圊 P.Erdős and G.Szekeres.
A combinatorial theorem in geometry. 1935.

> Preprint
> https://arxiv.org/abs/2106.02534

Thank You!

$$
\frac{\text { MICHIGAN STATE }}{\text { UN IVERSITY }}
$$

