Permutation groups and permutation patterns

Erkko Lehtonen

Centro de Matemática e Aplicações Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa

Permutation Patterns 2021 Virtual Workshop 16 June 2021

This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

Fundação para a Ciência e a Tecnologia

E. Lehtonen (Univ. Nova de Lisboa)

Permutation groups and permutation patterns

FCT

Proposition

For any ℓ , $n \in \mathbb{N}_+$, if S is a subgroup of S_ℓ , then $Av_n(S_\ell \setminus S)$ is a subgroup of S_n .

Notation: Comp⁽ⁿ⁾ $S := Av_n(S_{\ell} \setminus S).$

The permutation groups of the form $\text{Comp}^{(n)} S$ for some $S \subseteq S_{\ell}$, $\ell < n$, were characterized as the automorphism groups of certain relational structures.

E. LEHTONEN, R. PÖSCHEL,

Permutation groups, pattern involvement, and Galois connections, *Acta Sci. Math. (Szeged)* **83** (2017) 355–375.

A permutation class C in which every level C_n is a permutation group is called a **group class**.

M. D. ATKINSON, R. BEALS,

Permuting mechanisms and closed classes of permutations,

in: C. S. Calude, M. J. Dinneen (eds.), *Combinatorics, Computation & Logic,* Proc. DMTCS '99 and CATS '99 (Auckland), Aust. Comput. Sci. Commun., 21, No. 3, Springer, Singapore, 1999, pp. 117–127.

M. D. ATKINSON, R. BEALS, Permutation involvement and groups, *Q. J. Math.* **52** (2001) 415–421.

Theorem (Atkinson, Beals)

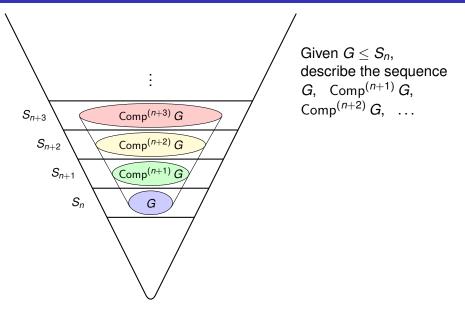
If C is a group class, then the level sequence C_1, C_2, C_3, \ldots eventually coincides with one of the following **stable families of groups:**

- the groups $S_n^{a,b}$ for some fixed $a, b \in \mathbb{N}_+$,
- O the natural cyclic groups Z_n ,
- the full symmetric groups S_n ,

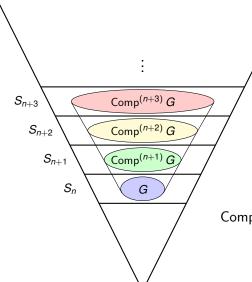
• the groups $\langle G_n, \delta_n \rangle$, where $(G_n)_{n \in \mathbb{N}}$ is one of the above families (with a = b in (1)).

Atkinson and Beals also described explicitly the group classes in which every level is a transitive group.

Our goal



Our goal



 $\begin{array}{ll} \text{Given } G \leq S_n, \\ \text{describe the sequence} \\ G, \quad \operatorname{Comp}^{(n+1)} G, \\ \operatorname{Comp}^{(n+2)} G, \quad \ldots \end{array}$

The operator Comp⁽ⁿ⁾ has a "transitive" property.

For
$$\ell \leq m \leq n$$
, $S \subseteq S_{\ell}$:

 $\operatorname{Comp}^{(n)}\operatorname{Comp}^{(m)}S = \operatorname{Comp}^{(n)}S$

Theorem

Let $G \leq S_n$ and let *m* be the smallest number *i* such that $Comp^{(n+i)} G$ belongs to one of the stable families of groups.

- If G is intransitive, then $m \le n 1$.
- If G is imprimitive and ζ_n ∉ G, then m ≤ p, where p is the largest proper divisor of n.
- 3 Otherwise $m \leq 2$.

E. LEHTONEN,

Permutation groups arising from pattern involvement, *J. Algebraic Combin.* **52** (2020) 251–298.