On the existence of bicrucial permutations

Tom Johnston University of Oxford

Joint work Carla Groenland.

Wednesday 16th June 2021

590

Definition

A square of length 2ℓ in σ is a factor

$$(S_1; S_2) = (\sigma_k, \ldots, \sigma_{k+\ell-1}; \sigma_{k+\ell}, \ldots, \sigma_{k+2\ell-1})$$

where S_1 and S_2 have the same reduced form, and we say the permutation σ is *square-free* if it contains no squares of length at least 4.

The permutation (7, 4, 1, 6, 10, 5, 2, 8, 11, 9, 3, 13, 12) is not square-free as

$$(4, 1, 6, 10) \sim (2, 1, 3, 4) \sim (5, 2, 8, 11).$$

Bicrucial permutations

ヘロト ヘ回ト ヘヨト ヘヨト

э

590

The factor (1, 6, 10, 5; 2, 8, 11, 9) is not a square because $(1, 6, 10, 5) \sim (1, 3, 4, 2) \not\sim (1, 2, 4, 3) \sim (2, 8, 11, 9).$

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

Bicrucial permutations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Bicrucial permutations

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Bicrucial permutations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Bicrucial permutations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

We say that the permutation σ is *right-crucial* if it is square-free but every right-extension contains a square.

Bicrucial permutations

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Definition

We say that the permutation σ is *right-crucial* if it is square-free but every right-extension contains a square.

Define left-extensions and left-crucial permutations similarly.

Definition

We say that the permutation σ is *right-crucial* if it is square-free but every right-extension contains a square.

Define left-extensions and left-crucial permutations similarly.

Definition

We say that the permutation σ is *bicrucial* if it is both left-crucial and right-crucial.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich (2011))

There exist bicrucial permutations of length 8k + 1, 8k + 5 and 8k + 7 for every $k \ge 1$.

Bicrucial permutations

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich (2011))

There exist bicrucial permutations of length 8k + 1, 8k + 5 and 8k + 7 for every $k \ge 1$.

Theorem (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))

There exist bicrucial permutations of lengths 19, 27 and 32.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))

There exist bicrucial permutations of length 8k + 3 for all $k \ge 2$.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))

There exist arbitrarily long bicrucial permutations of even length.

Theorem (Groenland, J. (2021+))

A bicrucial permutation of length n exists if and only if n = 9, $n \ge 13$ is odd or $n \ge 32$ is even and not 38.

Bicrucial permutations

Theorem (Groenland, J. (2021+))

A bicrucial permutation of length n exists if and only if n = 9, $n \ge 13$ is odd or $n \ge 32$ is even and not 38.

- Choose a left-crucial prefix and a right-crucial suffix.
- Join the prefix and suffix with a long square-free permutation which has some nice structure.
- Show that the nice structure means that there are no squares involving the prefix or the suffix.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (Groenland, J. (2021+))

A bicrucial permutation of length n exists if and only if n = 9, $n \ge 13$ is odd or $n \ge 32$ is even and not 38.

- Choose a left-crucial prefix and a right-crucial suffix.
- Join the prefix and suffix with a long square-free permutation which has some nice structure.
- Show that the nice structure means that there are no squares involving the prefix or the suffix.
- To show there is no bicrucial permutation of length 38, use a (large) computer search.

Bicrucial permutations of length 8k + 3

Bicrucial permutations

▲ロト▲母ト▲目ト▲目ト 目 のへの

Bicrucial permutations of length 8k + 3

Bicrucial permutations

▲ロト▲母ト▲目ト▲目ト 目 のへの

Bicrucial permutations of even length

Bicrucial permutations

▲ロト▲母ト▲目ト▲目ト 目 のへの

We say a permutation is *extremal* if it is square-free but inserting an entry in any position creates a square.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))

There exist arbitrarily long extremal permutations.

Bicrucial permutations

We say a permutation is *extremal* if it is square-free but inserting an entry in any position creates a square.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))

There exist arbitrarily long extremal permutations.

■ Gent, Kitaev, Konovalov, Linton, Nightingale (2015) - The only values of n ≤ 22 for which extremal permutations exist are 17 and 21.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We say a permutation is *extremal* if it is square-free but inserting an entry in any position creates a square.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))

There exist arbitrarily long extremal permutations.

■ Gent, Kitaev, Konovalov, Linton, Nightingale (2015) - The only values of n ≤ 22 for which extremal permutations exist are 17 and 21.

Thanks for listening!