On the existence of bicrucial permutations

Tom Johnston
University of Oxford

Joint work Carla Groenland.
Wednesday 16th June 2021

Definitions

Definition

A square of length 2ℓ in σ is a factor

$$
\left(S_{1} ; S_{2}\right)=\left(\sigma_{k}, \ldots, \sigma_{k+\ell-1} ; \sigma_{k+\ell}, \ldots, \sigma_{k+2 \ell-1}\right)
$$

where S_{1} and S_{2} have the same reduced form, and we say the permutation σ is square-free if it contains no squares of length at least 4.

Definitions

The permutation $(7,4,1,6,10,5,2,8,11,9,3,13,12)$ is not square-free as

$$
(4,1,6,10) \sim(2,1,3,4) \sim(5,2,8,11)
$$

Definitions

The factor $(1,6,10,5 ; 2,8,11,9)$ is not a square because

$$
(1,6,10,5) \sim(1,3,4,2) \nsim(1,2,4,3) \sim(2,8,11,9) .
$$

Definitions

Definitions

Definitions

Definitions

Definitions

Definition

We say that the permutation σ is right-crucial if it is square-free but every right-extension contains a square.

Definitions

Definition

We say that the permutation σ is right-crucial if it is square-free but every right-extension contains a square.

■ Define left-extensions and left-crucial permutations similarly.

Definitions

Definition

We say that the permutation σ is right-crucial if it is square-free but every right-extension contains a square.

■ Define left-extensions and left-crucial permutations similarly.

Definition

We say that the permutation σ is bicrucial if it is both left-crucial and right-crucial.

Previous work

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich (2011))
There exist bicrucial permutations of length $8 k+1,8 k+5$ and $8 k+7$ for every $k \geq 1$.

Previous work

Theorem (Avgustinovich, Kitaev, Pyatkin, Valyuzhenich (2011))
There exist bicrucial permutations of length $8 k+1,8 k+5$ and $8 k+7$ for every $k \geq 1$.

Theorem (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))

There exist bicrucial permutations of lengths 19, 27 and 32.

Conjectures

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))
There exist bicrucial permutations of length $8 k+3$ for all $k \geq 2$.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))
There exist arbitrarily long bicrucial permutations of even length.

Bicrucial permutations

Theorem (Groenland, J. (2021+))
A bicrucial permutation of length n exists if and only if $n=9$, $n \geq 13$ is odd or $n \geq 32$ is even and not 38 .

Bicrucial permutations

Theorem (Groenland, J. (2021+))

A bicrucial permutation of length n exists if and only if $n=9$, $n \geq 13$ is odd or $n \geq 32$ is even and not 38 .

- Choose a left-crucial prefix and a right-crucial suffix.
- Join the prefix and suffix with a long square-free permutation which has some nice structure.
- Show that the nice structure means that there are no squares involving the prefix or the suffix.

Bicrucial permutations

Theorem (Groenland, J. (2021+))

A bicrucial permutation of length n exists if and only if $n=9$, $n \geq 13$ is odd or $n \geq 32$ is even and not 38 .

- Choose a left-crucial prefix and a right-crucial suffix.
- Join the prefix and suffix with a long square-free permutation which has some nice structure.
- Show that the nice structure means that there are no squares involving the prefix or the suffix.
- To show there is no bicrucial permutation of length 38, use a (large) computer search.

Bicrucial permutations of length $8 k+3$

Bicrucial permutations of length $8 k+3$

Bicrucial permutations of even length

An open problem

We say a permutation is extremal if it is square-free but inserting an entry in any position creates a square.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))
There exist arbitrarily long extremal permutations.

An open problem

We say a permutation is extremal if it is square-free but inserting an entry in any position creates a square.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))
There exist arbitrarily long extremal permutations.
■ Gent, Kitaev, Konovalov, Linton, Nightingale (2015) - The only values of $n \leq 22$ for which extremal permutations exist are 17 and 21 .

An open problem

We say a permutation is extremal if it is square-free but inserting an entry in any position creates a square.

Conjecture (Gent, Kitaev, Konovalov, Linton, Nightingale (2015))
There exist arbitrarily long extremal permutations.
■ Gent, Kitaev, Konovalov, Linton, Nightingale (2015) - The only values of $n \leq 22$ for which extremal permutations exist are 17 and 21 .

Thanks for listening!

