Sorting Time of Permutation Classes Permutation Patterns 2021

Vít Jelínek, Michal Opler, Jakub Pekárek

June 15, 2021

- This is a talk about ongoing research
- It has not been written down yet, let alone peer reviewed

Sorting

Sorting

Examples of sorting steps:

- adjacent transposition (bubblesort)
- block reversal (pancake sorting, genome rearrangement)
- passage through a non-monotone stack

Sorting

Examples of sorting steps:

- adjacent transposition (bubblesort)
- block reversal (pancake sorting, genome rearrangement)
- passage through a non-monotone stack

Main question: How many steps are needed to sort any permutation of size *n*?

Let \mathcal{C} be a permutation class (idea: \mathcal{C} is the set of rearrangements that can be performed by a single sorting step).

Let C be a permutation class (idea: C is the set of rearrangements that can be performed by a single sorting step).

A *C*-sorting step for an input π is a mapping $\pi \mapsto \sigma \circ \pi$ for some $\sigma \in C$.

Let C be a permutation class (idea: C is the set of rearrangements that can be performed by a single sorting step).

A *C*-sorting step for an input π is a mapping $\pi \mapsto \sigma \circ \pi$ for some $\sigma \in C$.

The *C*-sorting time of π , denoted $\operatorname{st}(\mathcal{C}; \pi)$, is the smallest $k \in \mathbb{N}_0$ such that π can be mapped to the identity permutation by a composition of k sorting steps. If no such k exists, we put $\operatorname{st}(\mathcal{C}; \pi) = +\infty$.

Let C be a permutation class (idea: C is the set of rearrangements that can be performed by a single sorting step).

A *C*-sorting step for an input π is a mapping $\pi \mapsto \sigma \circ \pi$ for some $\sigma \in C$.

The *C*-sorting time of π , denoted $\operatorname{st}(\mathcal{C}; \pi)$, is the smallest $k \in \mathbb{N}_0$ such that π can be mapped to the identity permutation by a composition of k sorting steps. If no such k exists, we put $\operatorname{st}(\mathcal{C}; \pi) = +\infty$.

The worst-case C-sorting time, denoted wst(C; n), is defined as

wst(C; n) = max{st(C; π); $\pi \in S_n$ }.

Let C be a permutation class (idea: C is the set of rearrangements that can be performed by a single sorting step).

A *C*-sorting step for an input π is a mapping $\pi \mapsto \sigma \circ \pi$ for some $\sigma \in C$.

The *C*-sorting time of π , denoted $\operatorname{st}(\mathcal{C}; \pi)$, is the smallest $k \in \mathbb{N}_0$ such that π can be mapped to the identity permutation by a composition of k sorting steps. If no such k exists, we put $\operatorname{st}(\mathcal{C}; \pi) = +\infty$.

The worst-case C-sorting time, denoted wst(C; n), is defined as

 $wst(\mathcal{C}; n) = max\{st(\mathcal{C}; \pi); \pi \in S_n\}.$

Main result

For any permutation class C, one of the following holds:

• wst(
$$C$$
; n) = 1 for all $n \in \mathbb{N}$,

$$(\log n) \leq \operatorname{wst}(\mathcal{C}; n) \leq O(\log^2 n),$$

$$\ \, \mathfrak{Q}(\sqrt{n}) \leq \mathrm{wst}(\mathcal{C};n) \leq O(n),$$

• wst(
$$C$$
; n) = $\Theta(n^2)$, or

9
$$wst(C; n) = +\infty$$
 for all n large enough.

Let C be a permutation class (idea: C is the set of rearrangements that can be performed by a single sorting step).

A *C*-sorting step for an input π is a mapping $\pi \mapsto \sigma \circ \pi$ for some $\sigma \in C$.

The *C*-sorting time of π , denoted $\operatorname{st}(\mathcal{C}; \pi)$, is the smallest $k \in \mathbb{N}_0$ such that π can be mapped to the identity permutation by a composition of k sorting steps. If no such k exists, we put $\operatorname{st}(\mathcal{C}; \pi) = +\infty$.

The worst-case C-sorting time, denoted wst(C; n), is defined as

 $wst(\mathcal{C}; n) = max\{st(\mathcal{C}; \pi); \pi \in S_n\}.$

Main result

For any permutation class C, one of the following holds:

In all cases where we could determine the asymptotics of $wst(\mathcal{C}; n)$, we found either 1, $\Theta(\log n)$, $\Theta(n)$, $\Theta(n^2)$, or $+\infty$.

A monotone juxtaposition is any of the following eight classes:

For C a monotone juxtaposition, $wst(C; n) = \Theta(\log n)$.

A monotone juxtaposition is any of the following eight classes:

Proposition

For C a monotone juxtaposition, $wst(C; n) = \Theta(\log n)$.

Consider the following four classes:

Proposition

For any $C \in \{\mathcal{L}, \mathcal{L}^{c}, \mathcal{PBT}, \mathcal{PBT}^{c}\}$, we have $\Omega(\log n) \leq wst(C; n) \leq O(\log^{2} n)$.

A monotone juxtaposition is any of the following eight classes:

Proposition

For C a monotone juxtaposition, $wst(C; n) = \Theta(\log n)$.

Consider the following four classes:

Proposition

For any $C \in \{\mathcal{L}, \mathcal{L}^c, \mathcal{PBT}, \mathcal{PBT}^c\}$, we have $\Omega(\log n) \leq wst(C; n) \leq O(\log^2 n)$.

Open problem: Close the gap.

Theorem

If C does not contain any monotone juxtaposition and any of \mathcal{L} , \mathcal{L}^{c} , \mathcal{PBT} , and \mathcal{PBT}^{c} as subclass, then $wst(\mathcal{C}; n) \geq \Omega(\sqrt{n})$.

Theorem

If C does not contain any monotone juxtaposition and any of \mathcal{L} , \mathcal{L}^{c} , \mathcal{PBT} , and \mathcal{PBT}^{c} as subclass, then $wst(\mathcal{C}; n) \geq \Omega(\sqrt{n})$.

Conjecture: The lower bound can be improved to $\Omega(n)$.

Thank you for your attention!