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Work in progress

o This is a talk about ongoing research
o It has not been written down yet, let alone peer reviewed
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Examples of sorting steps:
o adjacent transposition (bubblesort)

@ block reversal (pancake sorting,
genome rearrangement)

@ passage through a non-monotone
stack

Main question: How many steps are needed
to sort any permutation of size n?



Sorting time

Let C be a permutation class (idea: C is the set of rearrangements that can be
performed by a single sorting step).



Sorting time

Let C be a permutation class (idea: C is the set of rearrangements that can be
performed by a single sorting step).

A C-sorting step for an input 7 is a mapping 7 — o o 7 for some o € C.



Sorting time

Let C be a permutation class (idea: C is the set of rearrangements that can be
performed by a single sorting step).

A C-sorting step for an input 7 is a mapping 7 — o o 7 for some o € C.

The C-sorting time of 7, denoted st(C; ), is the smallest k € Ng such that 7 can be
mapped to the identity permutation by a composition of k sorting steps. If no such k
exists, we put st(C; ) = +oo.



Sorting time

Let C be a permutation class (idea: C is the set of rearrangements that can be
performed by a single sorting step).

A C-sorting step for an input 7 is a mapping 7 — o o 7 for some o € C.

The C-sorting time of 7, denoted st(C; ), is the smallest k € Ng such that 7 can be
mapped to the identity permutation by a composition of k sorting steps. If no such k
exists, we put st(C; ) = +oo.

The worst-case C-sorting time, denoted wst(C; n), is defined as

wst(C; n) = max{st(C; w); m € Spn}.



Sorting time

Let C be a permutation class (idea: C is the set of rearrangements that can be
performed by a single sorting step).

A C-sorting step for an input 7 is a mapping 7 — o o 7 for some o € C.

The C-sorting time of 7, denoted st(C; ), is the smallest k € Ng such that 7 can be
mapped to the identity permutation by a composition of k sorting steps. If no such k
exists, we put st(C; ) = +oo.

The worst-case C-sorting time, denoted wst(C; n), is defined as

wst(C; n) = max{st(C; w); m € Spn}.

Main result

For any permutation class C, one of the following holds:
Q wst(C;n) =1 foralln €N,
@ Q(log n) < wst(C; n) < O(log? n),
9 Q(v/n) < wst(C; n) < O(n),
Q wst(C; n) = ©(n?), or
@ wst(C; n) = +oo for all n large enough.



Sorting time

Let C be a permutation class (idea: C is the set of rearrangements that can be
performed by a single sorting step).

A C-sorting step for an input 7 is a mapping 7 — o o 7 for some o € C.

The C-sorting time of 7, denoted st(C; ), is the smallest k € Ng such that 7 can be
mapped to the identity permutation by a composition of k sorting steps. If no such k
exists, we put st(C; ) = +oo.

The worst-case C-sorting time, denoted wst(C; n), is defined as

wst(C; n) = max{st(C; w); m € Spn}.

Main result

For any permutation class C, one of the following holds:
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For any C € {L£, £, PBT,PBT¢}, we have Q(log n) < wst(C; n) < O(log? n).

Open problem: Close the gap.
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If C does not contain any monotone juxtaposition and any of L, L, PBT, and PBT*
as subclass, then wst(C; n) > Q(+/n).



From polylog to polynomial

Theorem

If C does not contain any monotone juxtaposition and any of L, L, PBT, and PBT*
as subclass, then wst(C; n) > Q(+/n).

Conjecture: The lower bound can be improved to Q(n).



The End

Thank you for your attention!



