Some combinatorial results on smooth permutations

Shoni Gilboa

The Open University of Israel

Permutation Patterns 2021

Joint work with Erez Lapid

A permutation $\sigma \in S_n$ is called smooth if the Schubert variety pertaining to σ is smooth.

Lakshmibai and Sandhya (1990): A permutation is smooth if and only if it is 4231 and 3412 avoiding.

Decorated Dyck paths

We define a decorated Dyck path of semilength n to be a function $f : \{1, ..., n\} \rightarrow \{1, ..., n\}$ together with a function $g : \{1, ..., n\} \rightarrow \{0, 1\}$ such that $\blacktriangleright f$ is non-decreasing and $f(i) \ge i$ for all i. $\blacktriangleright g(i) = 0$ whenever f(f(i)) = f(i). $\blacktriangleright g(i) = g(i+1)$ whenever i < n and f(i+1) < f(f(i)).

For every $1 \le i < j \le n$ let $R_{[i,j]} \in S_n$ be the cycle permutation $i \to i + 1 \to \cdots \to j \to i$.

Theorem: The following map is a bijection between the decorated Dyck paths of semilength n and the smooth permutations in S_n :

$$(f,g) \to (R_{[j_{\ell},f(j_{\ell})]} \cdots R_{[j_{1},f(j_{1})]})^{-1} R_{[i_{k},f(i_{k})]} \cdots R_{[i_{1},f(i_{1})]},$$

where

•
$$g^{-1}(0) = \{i_1, \ldots, i_k\}, i_1 < \cdots < i_k.$$

• $g^{-1}(1) = \{j_1, \ldots, j_\ell\}, j_1 < \cdots < j_\ell.$

Enumerative consequences

The bijection between decorated Dyck paths and smooth permutations gives a new approach for proving some known enumerative results.

- Knuth (1973): The number of 231 avoiding permutations in S_n (which are automatically smooth) is the Catalan number C_n.
- Haiman (1992): The generating function of the number of smooth permutations in S_n is

$$1 + \left(\frac{1}{x} - \frac{1}{\sqrt{1 - 4x}} - 1\right)^{-1}$$

• West (1996): The number of 321 avoiding smooth permutations in S_n is the Fibonacci number F_{2n-1} .

2-3-tables

The 2-3-table $C(\sigma)$ of a permutation $\sigma \in S_n$ is defined to be the set of transpositions and the 3-cycles in S_n that are $\leq \sigma$ with respect to the Bruhat order.

Theorem: The map $\sigma \mapsto C(\sigma)$ is injective for smooth permutations in S_n .

Moreover, a smooth permutation σ may be recovered from its 2-3-table by taking the product of the transposition in C(σ) (each appearing exactly once) according to a suitable order (governed by the additional data in the 2-3-table).

Relation to Covexillary permutations

A permutation is called covexillary if it is 3412 avoiding.

Theorem: For any covexillary $\tau \in S_n$ there is a (unique) smooth permutation $\sigma \in S_n$ such that $C(\sigma) = C(\tau)$.

Moreover, there are covexillary permutations $\tau = \tau_0 < \tau_1 < \cdots < \tau_r = \sigma$ in S_n such that $\tau_{i-1}^{-1}\tau_i$ is a transposition for every $1 \le i \le r$.

THANK YOU FOR YOUR ATTENTION