Some combinatorial results on smooth permutations

Shoni Gilboa

The Open University of Israel
Permutation Patterns 2021

Joint work with Erez Lapid

Smooth permutations

A permutation $\sigma \in S_{n}$ is called smooth if the Schubert variety pertaining to σ is smooth.

Lakshmibai and Sandhya (1990): A permutation is smooth if and only if it is 4231 and 3412 avoiding.

Decorated Dyck paths

We define a decorated Dyck path of semilength n to be a function $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ together with a function
$g:\{1, \ldots, n\} \rightarrow\{0,1\}$ such that

- f is non-decreasing and $f(i) \geq i$ for all i.
- $g(i)=0$ whenever $f(f(i))=f(i)$.
- $g(i)=g(i+1)$ whenever $i<n$ and $f(i+1)<f(f(i))$.

For every $1 \leq i<j \leq n$ let $R_{[i, j]} \in S_{n}$ be the cycle permutation $i \rightarrow i+1 \rightarrow \cdots \rightarrow j \rightarrow i$.

Theorem: The following map is a bijection between the decorated Dyck paths of semilength n and the smooth permutations in S_{n} :

$$
(f, g) \rightarrow\left(R_{\left[j, f\left(j_{\ell}\right)\right]} \cdots R_{\left[j_{1}, f\left(j_{1}\right)\right]}\right)^{-1} R_{\left[i_{k}, f\left(i_{k}\right)\right]} \cdots R_{\left[i_{1}, f\left(i_{1}\right)\right]}
$$

where

- $g^{-1}(0)=\left\{i_{1}, \ldots, i_{k}\right\}, i_{1}<\cdots<i_{k}$.
- $g^{-1}(1)=\left\{j_{1}, \ldots, j_{\ell}\right\}, j_{1}<\cdots<j_{\ell}$.

Enumerative consequences

The bijection between decorated Dyck paths and smooth permutations gives a new approach for proving some known enumerative results.

- Knuth (1973): The number of 231 avoiding permutations in S_{n} (which are automatically smooth) is the Catalan number C_{n}.
- Haiman (1992): The generating function of the number of smooth permutations in S_{n} is

$$
1+\left(\frac{1}{x}-\frac{1}{\sqrt{1-4 x}}-1\right)^{-1}
$$

- West (1996): The number of 321 avoiding smooth permutations in S_{n} is the Fibonacci number $F_{2 n-1}$.

2-3-tables

The 2-3-table $\mathrm{C}(\sigma)$ of a permutation $\sigma \in S_{n}$ is defined to be the set of transpositions and the 3-cycles in S_{n} that are $\leq \sigma$ with respect to the Bruhat order.

Theorem: The map $\sigma \mapsto \mathrm{C}(\sigma)$ is injective for smooth permutations in S_{n}.

Moreover, a smooth permutation σ may be recovered from its 2-3-table by taking the product of the transposition in $\mathrm{C}(\sigma)$ (each appearing exactly once) according to a suitable order (governed by the additional data in the 2-3-table).

Relation to Covexillary permutations

A permutation is called covexillary if it is 3412 avoiding.
Theorem: For any covexillary $\tau \in S_{n}$ there is a (unique) smooth permutation $\sigma \in S_{n}$ such that $\mathrm{C}(\sigma)=\mathrm{C}(\tau)$.

Moreover, there are covexillary permutations $\tau=\tau_{0}<\tau_{1}<\cdots<\tau_{r}=\sigma$ in S_{n} such that $\tau_{i-1}^{-1} \tau_{i}$ is a transposition for every $1 \leq i \leq r$.

THANK YOU
 $\mathcal{F O R}$ YOUR $\mathcal{A T} \mathcal{T E N T I O N}$

