
$1 \Theta(1 \Theta(1 \oplus(1 \oplus 1)))$

(\oplus There is a bijection:
Theorem (Bose'98)
se parable permutations \leftrightarrow plane trees of size n
with in leaves such that

- internal varices are decorated with $\oplus-\oplus$
- (7) - θ alternate
- out -degree

$$
\in\{0,2,3,4, \ldots\}
$$

Schroeder Trees
Schról $(\sigma)=$ unique tree associated to σ

What about patterns?

Proportion:

$$
\left.\begin{array}{c}
\text { Proportion: } \\
\text { occ }(\pi, \sigma)=\#\left\{\begin{array}{l}
\text { Sublirees of } \operatorname{Schr"}(\sigma) \\
\text { induced by } k \text { leaves } \\
\text { which encode } \\
\text { for } \pi
\end{array}\right\}
\end{array}\right\}
$$

(II) Patterns in separable permutation

continuous \& fractal trier
Aldous' Continue Random Tree
\rightarrow One hopes to deduce 90's asymptotics for $\operatorname{occ}(\pi, \sigma)$

Theorem (BBFP 2018)
Fix k and a pattern $\pi \in \widetilde{\sigma}_{k}$
let $\left(\sigma_{n}\right)$ be uniform separable permutations of size n
There exists a random vainable $\Lambda_{\pi} \in[0,1]$ such that:

$$
\frac{\operatorname{occ}\left(\pi, \sigma_{n}\right)}{\binom{n}{h}} \xrightarrow{(\text { in distubution })}
$$

Furthermore, if π separable:

- $0<\Lambda_{\pi}<1$
$\Leftrightarrow 0<c\left(\pi, \sigma_{n}\right)$ really scales
like $\binom{n}{k} \sim \frac{m^{k}}{k!}$
- Λ_{π} is a "true" random variable

$$
\text { - } \mathbb{E}\left[\Lambda_{\pi}\right]=\frac{\#\left\{\begin{array}{l}
\text { binary trees of sty } k \\
\text { which encode } \pi
\end{array}\right\}}{C_{\text {at }}^{k-1} \times 2^{k-1}}
$$

- In the case Λ_{12} one can compute $\mathbb{E}\left[\Lambda_{12}\right], \mathbb{E}\left(\Lambda_{12}^{2}\right], \ldots \mathbb{E}\left[\Lambda_{12}^{7}\right)$

Theorem (Bis)
Let $\left(\sigma_{n}\right)$ be un inform separable permutation, let $P_{\sigma_{n}}$ be the permutation associated to σ_{n}. Then

(in the space
where $\mu^{(1 / 2)}$ is a "continues and fractal" permute.
informally,
Aldous 'cRT \downarrow

$$
\pi \mu^{(1 / 2)}=\operatorname{Schro}^{\prime 1}\binom{\tau}{\text { with Fair } \left._{\substack{-1 \\ \Theta^{\prime} s \\-\Theta^{\prime} s}}\right)}
$$

made rigorous by (Maazoun 2019).

$$
\begin{aligned}
& \text { (V) What about universality? Then under these } 2 \text { assumptions. } \\
& \begin{array}{l}
\text { - We only consider } \\
\text { subititution-closed } C
\end{array} \\
& \text { We also can encode permit. } \\
& \text { in } \varphi \text { with (more decorated) } \\
& \text { - If simple permutation. } \\
& \text { in } C \text { do not ow too fast } \\
& \text { then we still can woe the CRT. } \\
& \text { There (BB FGM P 2020) } \\
& \text { (let }\left(\sigma_{n}\right) \text { be uniform in } \varphi \\
& \text { of size } m \text {, then: }
\end{aligned}
$$

