
Sorting with stacks and queues: some recent developments

Sorting with stacks and queues: some recent

developments

L. Ferrari

Dipartimento di Matematica e Informatica “U. Dini", Universitá degli Studi di Firenze,
Viale Morgagni 65, 50134 Firenze, Italy

luca.ferrari@unifi.it

Permutation Patterns Virtual Workshop 2021, 14-15 June 2021.

In collaboration with: Giulio Cerbai, Lapo Cioni, Anders Claesson,
Einar Steingrímsson



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

The general framework

Stack sorting (and relatives...)

General framework:

INPUT - a permutation π;

MACHINE - a network of devices (may be stacks, queues, etc...), connected in
series or in parallel (or in some more fancy way...);

OUTPUT - another permutation f (π), which is hopefully the identity, otherwise
somehow "closer" to the identity than the original permutation π.



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

The general framework

Main questions

◮ Characterize and enumerate sortable permutations.

◮ Design optimal sorting algorithms.

◮ Investigate properties of the associated map.



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 6 4 7 1 2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3

6 4 7 1 2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 6 4 7 1 2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3

6

4 7 1 2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3

6
4

7 1 2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4

6

7 1 2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6 7 1 2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6

7

1 2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6

7
1

2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6 1

7

2 5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6 1

7
2

5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6 1 2

7

5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6 1 2

7
5



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6 1 2 5

7



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

Stacksort: where it all started

Sorting permutations using a stack [Knuth, 1968]:

output input

I

3 4 6 1 2 5 7



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Stacksort

What do we know about sorting with one stack?

We know (almost) everything:

◮ sortable permutations: Av(231);

◮ enumeration of sortable permutations: Cn (Catalan numbers);

◮ optimal algorithm (Stacksort) [Knuth, West];

◮ what about preimages of the associated Stacksort map?

These are very neat and beautiful results! Several researches on complex
networks of sorting devices immediately begun.



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Some literature on sorting with network of devices

From stacksort to networks

◮ [Even and Itai, 1971]: graph encoding of sorting with parallel queues
and stacks;

◮ [Tarjan, 1972]: characterizazion of permutations sortable by queues
in parallel; some partial information on permutations sortable by
stacks in parallel (only in 2015, [Albert and Bousquet-Melou] gave
more precise results for sorting with two stacks in parallel);

◮ [Pratt, 1973]: deque-sortable permutations;

◮ [Atkinson and Sack, 1999]: characterizzation of permutations
sortable by popstacks in parallel (later, in 2009, [Smith and Vatter]
showed that the generating function of sortable permutations is
rational).

Very difficult problems even with very small networks!



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Some literature on sorting with network of devices

Two stacks in series

Still open in its full generality.

◮ No characterization of sortable permutations is known; but we know
[Murphy, 2002] that they are a class with infinite basis, even if we
don’t know the elements of the basis.

◮ No enumeration of sortable permutations is known; but we know
[Elvey Price and Guttmann, 2017] some information on the
asymptotic behavior of the associated generating function.

◮ No optimal sorting algorithm is known; but we know [Pierrot and
Rossin, 2014] that deciding if a permutation is sortable is polynomial.

Possible restrictions:

◮ fix the algorithm;

◮ set constraints on the contents of the stacks.



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Some literature on sorting with network of devices

Two stacks in series

Several special cases have been considered.

◮ 2-stacksort [West, 1990]: right-greedy algorithm ( increasing
stacks):
◮ characterization in terms of barred patterns [West],
◮ exact enumeration [Zeilberger, 1992],
◮ a lot of interesting bijective combinatorics

◮ nonseparable planar maps and left ternary trees [Cori, Jacquard and
Schaeffer, 1997; Del Lungo, Del Ristoro and Penaud ,2000],

◮ generalized Tamari intervals [Fang and Preville-Ratelle, 2017;
Preville-Ratelle and Viennot, 2017],

◮ fighting fish [Duchi, Guerrini, Rinaldi and Schaeffer, 2017; Fang,
2018].

◮ extension to 3 stacks: mesh (decorated) patterns [Ulfarsson, 2011;
Claesson and Ulfarsson, 2012], lower/upper bounds [Bona, 2020;
Defant, 2020].



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Some literature on sorting with network of devices

Two stacks in series

Several special cases have been considered.

◮ Increasing stacks [Atkinson, Murphy and Ruškuc, 2002]:
◮ characterization in terms of patterns (infinite basis),
◮ exact enumeration (same counting sequence as 1342-avoiding

permutations, first example of an (extremely!) unbalanced Wilf
equivalence),

◮ optimal sorting algorithm (left-greedy, as opposed to the right-greedy
algorithm of West).



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Some literature on sorting with network of devices

Two stacks in series

Several special cases have been considered.

◮ Popstacks [Avis and Newborn, 1981]:
◮ characterization in terms of patterns: separable permutations (for

any number of popstacks in series),
◮ exact enumeration (Schröder numbers, [Shapiro and Stephens,

1991]),
◮ optimal sorting algorithm.

◮ Popstacks, with right-greedy algorithm [Pudwell and Smith, 2017]:
◮ characterization in terms of barred patterns,
◮ exact enumeration (rational generating function),
◮ links with other combinatorial structures (polyominoes),
◮ generalization to k popstacks ([Claesson and Guðmundsson, 2018]:

rational generating function).



Sorting with stacks and queues: some recent developments

Sorting permutations with networks of devices

Some literature on sorting with network of devices

Two stacks in series

Several special cases have been considered.

◮ A stack and a popstack in series (with or without a queue between
them) [Smith and Vatter, 2014]:
◮ characterization in terms of three patterns in the PS case,
◮ characterization in terms of divided patterns in the PQS case (but no

information on the basis),
◮ exact enumeration in the PS case (algebraic generating function).



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

A decresing stack followed by an increasing stack

Rebecca Smith’s DI machine (2014)

A decreasing stack followed by an increasing stack.
Operations:

◮ µ1: from input to D;

◮ µ2: from D to I;

◮ µ3: from I to output.

µ3 µ2 µ1

output input

DI

Optimal sorting algorithm: when
the current element in the input is
πi :

◮ µ3: if TOP(I) is the next
element to output;

◮ µ1: if
TOP(D) < πi < TOP(I);

◮ µ2: if TOP(D) < TOP(I);

◮ µ3: otherwise.

Characterization and exact
enumeration of sortable

permutations:

◮ π sortable iff
π ∈ Av(3241, 3142);

◮ |Avn+1(3241, 3142)| is the
n-th Schröder number.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

A decresing stack followed by an increasing stack

Comparison with Stacksort

Sortable permutations Stacksort DI machine

Characterization AV (231) Av(3241, 3142)

Enumeration Catalan numbers Schröder numbers

Optimal sorting algorithm yes yes

What about a D2I machine?



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: comparison with two stacks in series

output input

D1D2I

Sortable permutations two stacks in series D2I machine

Characterization infinite basis infinite basis

Enumeration ??? ???

Optimal sorting algorithm ??? YES!!!



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: infinite basis

Theorem ( Cerbai, Cioni and F., 2020 )
For j ≥ 0, define the permutation:

αj = 2j + 4, 3, a1, b1, a2, b2, . . . , aj , bj , 1, 5, 2

where:{

(a1, . . . , aj) = (2j + 2, 2j, 2j − 2, . . . , 6, 4),

(b1, . . . , bj) = (2j + 5, 2j + 3, 2j + 1, . . . , 9, 7).

Then the set of permutations {αj}j≥0 constitutes an infinite antichain
and is a subset of the basis of the class of sortable permutations.

•

•

•

•

•

•

•

•

•

•

•



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

Operations:

◮ µ0: from input to D1;

◮ µ1: from D1 to D2;

◮ µ2: from D2 to I;

◮ µ3: from I to output.

µ3 µ2 µ1 µ0

output input

D1D2I

Optimal sorting algorithm [Cerbai, Cioni and F., 2020]: when the current
element in the input is πi :

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

341965278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

3

41965278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

3

41965278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

3 4

1965278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

3
4

1965278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

3
4 1

965278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

3
4

1
9

65278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

3
4
9

1

65278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);
◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9 3
4 1

65278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9 3
4

1
6

5278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9
3
4
6

1

5278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9
3
4
6

1
5

278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);
◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9
6

3
4

1
5

278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9
6

3
4
5

1

278

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9
6

3
4
5

1
2

78

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);
◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9
6
5
4
3

1
2

78

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

9
6
5
4
3

2 1

78

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);
◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I
9
6
5
4
3
2

1

78

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I
9
6
5
4
3
2

1

78

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);
◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I
9
6
5
4
3
2
1 78

◮ µ3: if TOP(I) is the next element to output;
◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

123456

9

78

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

123456

9 7

8

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

123456

9 7

8

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from
πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

123456

9 7 8

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);
◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

123456

9 7
8

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);
◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

123456

9
8
7

◮ µ3: if TOP(I) is the next element to output;
◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.



Sorting with stacks and queues: some recent developments

Designing optimal algorithms: stack sorting with increasing and decreasing stacks

Two decreasing stacks followed by an increasing stack

A D
2
I machine: optimal sorting algorithm

output input

D1D2I

123456789

◮ µ3: if TOP(I) is the next element to output;

◮ µ1: if TOP(D2) < TOP(D1) < TOP(I);

◮ µ0: if TOP(D1) < πi < TOP(I) and the sequence of elements from πi to the first element larger than Top(D2) is increasing;

◮ µ2: if TOP(D2) < TOP(I);

◮ µ3: otherwise.

Can we generalize to Dk I?



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Pattern-avoiding stacks

Two passes from an increasing stack

West-2-stack sorting:

output input

I

←−
output input

I



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Pattern-avoiding stacks

Two passes from pattern-restricted stacks

West-2-stack sorting:

output input

2
1

←−
output input

2
1

σ-stack sorting [Cerbai, Claesson and F., 2020]:

output input

2
1

←−
output input

σ



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Pattern-avoiding stacks

Why pattern-restricted stacks?

Motivations:

◮ better understanding of the general “two stacks in series" sorting
problem;

◮ development of a family of sorting devices that may help in tackling
the general “two stacks in series" sorting problem;

◮ nice enumerative and bijective combinatorics!

Main questions:

◮ characterization of σ-sortable permutations;

◮ enumeration of σ-sortable permutations.



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Pattern-avoiding stacks

|σ| = 2

σ = 21: West-2-stack sorting machine.

◮ characterization in terms of barred patterns  not a class!

◮ nice enumeration formula: 2
(n+1)(2n+1)

(
3n
n

)
.

σ = 12: Rebecca Smith’s device (a decreasing stack, followed by an
increasing stack), but with a right-greedy algorithm.

◮ characterizazion in terms of a single classical pattern: Av(213)  is
a class!

◮ (obviously) nice enumeration formula: Cn.

Additional interesting question: for what σ do we get classes?



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

Classes vs. non-classes
When |σ| = 3, we get that 321-sortable permutations are a class, whose
enumeration sequence is 2n−1. In all the remaining cases, σ-sortable
permutations are not a class:

σ σ-sortable permutation non-σ-sortable pattern
123 4132 132
132 2413 132
213 4132 132
231 361425 1324
312 3142 132

Looking at more data, we find a surprising conjecture for the number of
σ whose associated σ-sortable permutations are not a class:

◮ σ of length 3  5 non-class;

◮ σ of length 4  14 non-classes;

◮ σ of length 5  42 non-classes;

◮ σ of length 6  132 non-class;

These are the Catalan numbers!



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

Classes vs. non-classes

Given a permutation σ, denote with σ̂ the permutation obtained from σ

by swapping its first two elements.

Theorem ( Cerbai, Claesson and F., 2020 )
Sort(σ) is not a class iff σ̂ ∈ Av(231).

What about classes?

Theorem ( Cerbai, Claesson and F., 2020 )
If σ̂ contains 231, then Sort(σ) = Av(132, σr ).

Open problem: classify σ-machines in terms of the number of
permutations they sort (Wilf-equivalence for σ-machines).



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

Patterns of length 3
Three patterns have been solved:

◮ σ = 321: 2n−1 (n ≥ 1), sequence A011782 in OEIS  Dyck paths of
height at most 2 (generalization to k(k − 1) · · · 21 and Dyck paths of
height at most k − 1) [Cerbai, Claesson and F., 2020];

◮ σ = 123: 1 +
∑n−1

k=1
(n − k)Ck (n ≥ 1), sequence A294790 in OEIS  

Schröder paths avoiding UHD [Cerbai, Claesson and F., 2020];

◮ σ = 132:
∑n−1

k=0

(
n−1

k

)
Ck (n ≥ 1), sequence A007317 in OEIS  restricted

growth functions avoiding 12231 [Cerbai, Claesson, F. and Steingrímsson,
2020].

Three patterns are still open:

◮ σ = 213: 1, 1, 2, 5, 16, 62, 273, 1307, 6626, 35010, 190862, 1066317, . . .,
not in OEIS;

◮ σ = 231: 1, 1, 2, 6, 23, 102, 496, 2569, 13934, 78295, 452439, 2674769, . . .,
not in OEIS;

◮ σ = 312: 1, 1, 2, 5, 15, 52, 201, 843, 3764, 17659, 86245, 435492, . . .,
sequence A202062 in OEIS  ascent sequences avoiding 201 (for which
however no formula is known).



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

σ = 321

•

•

•

•

•

•

•

•

•

•

•

•

•

6

5 4

3 2

1

5 4

6 3

1

2

l

5 4 6 3 1 2

|Sortn(321)| = |Avn(132, 123)|

= |{Dyck paths of semilength n and height ≤ 2}| = 2n−1



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

σ = 123

π = 5 6 7 4 8 9 1 3 2 |π| = n



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

σ = 123

π = 5 6
︸︷︷︸

L

7 4 8 9 1 3 2
︸ ︷︷ ︸

w

|π| = n

L: initial sequence of consecutive ascents deprived of its last element

|L| = r



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

σ = 123

π = 5 6
︸︷︷︸

L

7 4 8 9 1 3 2
︸ ︷︷ ︸

w

|π| = n

|L| = r

|{elements of w larger than its first element}| = s

ρ = permutation obtained from w by removing green elements



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

σ = 123

π = 5 6
︸︷︷︸

L

7 4 8 9 1 3 2
︸ ︷︷ ︸

w

|π| = n

|L| = r

|{elements of w larger than its first element}| = s

τ = permutation obtained from ρ by removing the first (=maximum) element

|τ | = n − r − s − 1 τ ∈ Av(213)



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

σ = 123
π = 5 6

︸︷︷︸

L

7 4 8 9 1 3 2
︸ ︷︷ ︸

w

l

• • •

•

•

•

•

•

•

•

• • •
5 6 7

4 1

3 2

4
3 2

1 8 9

|Sortn(123)| = |{Schröder paths of semilength n − 1 avoiding UHD}|

∑

n≥0

|Sortn(123)|xn =
1

1 − x
+

1

1 − x

(
x(C(x)−1)

) 1

1 − x
=

1 − 2x + xC(x)

(1 − x)2

|Sortn(123)| = subtract n from partial sums of partial sums of Catalan numbers



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

σ = 132

µ =

Theorem

Sort(132) = Av(2314, µ)

Grid decomposition

B1 B2 B3 B4 B5

H1

H2

H3

H4

H5

Restricted growth function:
blocks are horizontal strips
Hi

111223332345445

Corollary

|Sortn(132)| = |Rn(12231)|

=
n−1∑

k=0

(
n − 1

k

)

Ck

(sequence A007317 in the
Encyclopedia). Last equality is due to
[Jelínek and Mansour, 2008].



Sorting with stacks and queues: some recent developments

Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks

Enumerative combinatorics of pattern-avoiding stacks

Further work on σ-sorting

◮ Γ-sortable permutations, where Γ is any set of patterns; when
|Γ| = 2, several cases have been solved [Baril, Cerbai, Khalil and
Vajnovszki, 2021+];

◮ characterize sorted permutations and investigate fertility [Berlow,
2021+; Defant and Zheng, 2021];

◮ σ-sortable words of various types: unrestricted words [Defant and
Kravitz, 2020], Cayley permutations [Cerbai, 2021+], (modified)
ascent sequences [Cerbai and Claesson, 2021+].

Much more on all this in Giulio Cerbai’s PhD thesis (2021)!



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

Queuesort

Queuesort: characterization and enumeration of sortable
permutations

What about replacing the stack with a queue in Stacksort?

Not a big deal: the only sortable permutations are the increasing ones!

However, if we allow the bypass of the queue, we obtain an interesting
sorting algorithm, called Queuesort.

◮ Sortable permutations are 321-avoiding permutations; more
generally, permutations which are sortable by k queues in parallel
(again with a bypass) are those avoiding (k + 2)(k + 1)k · · · 21.

◮ Sortable permutations are counted by Catalan numbers.



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

Preimages under Queuesort

The investigation of preimages of the Stacksort operator begun with
[Bousquet-Mélou, 2000] and recently has received a lot of attention
([Defant, 2017; Defant, Engen and Miller, 2020], to cite just a few). It is
a rather difficult problem, so results are difficult to obtain and there is
still much that remains unknown.

Curiously, it seems that nothing had been done done for the (somehow
simpler) Queuesort operator. Hopefully, more (and neater) results should
be obtained! The next slides will describe what we know on the
combinatorics of preimages under Queuesort [Cioni and F., 2021+].



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

The Queuesort map

An alternative (but equivalent) description of Queuesort:

bc
bc

bc
bc

bc −→
bc

bc

bc
bc

bc −→
bc

bc

bc
bc

bc −→
bc

bc

bc
bc

bc

Corollary
Given π = π1π2 · · · πn, we have that q−1(π) 6= ∅ if and only if πn = n.



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

A recursive characterization of preimages

LTR-max decomposition of π:

π = M1P1M2P2M3 · · · Mk−1Pk−1Mk

where the Mi ’s are all the maximal sequences of contiguous LTR maxima
of π.

351268974 35
︸︷︷︸

M1

12
︸︷︷︸

P1

689
︸︷︷︸

M2

74
︸︷︷︸

P2

︸︷︷︸

M3

For any string α, denote with α′ the string obtained from α by removing
the last element.
Denote with µi the last (=largest) element of Mi .



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

A recursive characterization of preimages
π = M1P1 · · ·Mk−1Pk−1Mk ∈ Sn:

◮ if π is the identity permutation, then the preimages of π are precisely the

321-avoiding permutations (of the same length);

◮ otherwise
◮ compute all the preimages of M1P1 · · ·Mk−2Pk−2M′

k−1n and concatenate

them with µk−1Pk−1M′

k
;

◮ if |Mk | ≥ 2, then compute all the preimages N1R1 · · ·Ns−1Rs−1Ns of π
′

and insert n in each of the positions to the right of Ns−1.

23145 25

25

25314

52

52314 2314 24

24243124531
24351
24315

424231

45231
42531
42351
42315



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

How many permutations with a given number of
preimages?

Q(k)
n = {π ∈ Sn | |q−1(π)| = k}

q(k)
n = |Q(k)

n |

We already know:

Q(0)
n = {π ∈ Sn | πn 6= n}

q(0)
n = (n − 1)! · (n − 1)

What happens for other values of k?



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

How many permutations with a given number of
preimages?

◮ Q
(1)
n = {π ∈ Sn | πn = n and π does not have two adjacent LTR maxima}

q(1)
n = (n − 1)! ·

n−1∑

i=0

(−1)i

i !

◮ Q
(2)
n = {π ∈ Sn | πn = n and the only adjacent LTR maxima are the first two elements}

q
(2)
n+1

= (n − 1)q(2)
n + (n − 1)q

(2)
n−1

, n ≥ 3,

q
(2)
0 = q

(2)
1 = q

(2)
3 = 0, q

(2)
2 = 1.

q
(2)
n = (n − 1)! − 2q

(1)
n

∑

n≥0

q
(2)
n

xn

n!
=

x(2 − x − 2e−x )

1 − x
.



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

How many permutations with a given number of
preimages?

What about larger values of k?

We know that there exists permutations having any number of
preimages...

Proposition
Given n ≥ 2, let
π = n(n − 1)(n − 2) · · · 21(n + 2)(n + 3)(n + 1)(n + 4) ∈ Sn+4. Then
|q−1(π)| = n + 2.

... with only one exception!

Proposition
There exists no permutation π such that |q−1(π)| = 3.



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

How many preimages for a given permutation?

Theorem
For π = M1P1M2 ∈ Sn, M2 6= ∅:

|q−1(π)| =

m2∑

i=1

i−1∑

j=0

(
i − 1

j

)

bm1+j+1,m1 · bm2+p1−j,m2−i+1

=

m2−1∑

t=0

ωm2,t(p1)Cm1+t ,

where the b’s are (some version of) the ballot numbers and ωm2,t(p1) is a
polynomial in p1 of degree m2 − t − 1, for all t.

◮ |q−1(π)| = Cm1 , when |M2| = 1;

◮ |q−1(π)| = Cm1+1 + (p1 + 1)Cm1 , when |M2| = 2;

◮ |q−1(π)| = Cm1+2 + (p1 + 1)Cm1+1 + 1
2 (p1 + 1)(p1 + 4)Cm1 , when

|M2| = 3.



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

Further work on preimages of sorting operators

◮ Iterates of the Queuesort map

◮ Further properties of the sets Q
(k)
n (pattern avoidance,...)

◮ Pattern avoiding queues in series

◮ Preimages of maps associated with other sorting algorithms:
C-machines (thanks Vince for the suggestion!), Bubblesort (work in
progress with Lapo and Mathilde),...



Sorting with stacks and queues: some recent developments

Sorting maps: preimages under Queuesort

The Queuesort map: preimages

Thank you for listening...

and see you in person next
year!!!


	Sorting permutations with networks of devices
	The general framework
	Stacksort
	Some literature on sorting with network of devices

	Designing optimal algorithms: stack sorting with increasing and decreasing stacks
	A decresing stack followed by an increasing stack
	Two decreasing stacks followed by an increasing stack

	Characterizing and enumerating sorting permutations: sorting with pattern restricted stacks
	Pattern-avoiding stacks
	Enumerative combinatorics of pattern-avoiding stacks

	Sorting maps: preimages under Queuesort
	Queuesort
	The Queuesort map: preimages


