Admissible Pinnacle Sets and Ballot Numbers

Rachel Domagalski
（Joint work with Jinting Liang，Quinn Minnich，Bruce Sagan，James Schmidt，and Alexander Sietsema）

Michigan State University
June 16， 2021

Pinnacle Sets

The pinnacle set of a permutation $\pi \in \mathfrak{S}_{n}$ is
$\operatorname{Pin} \pi=\left\{\pi_{i} \mid \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\} \subseteq[2, n-1]$.

$$
\text { If } \pi=18524376 \text { then } \operatorname{Pin} \pi=\{4,7,8\} .
$$

A set S is an admissible pinnacle set if there is some permutation π with $\operatorname{Pin} \pi=S$.

Definition (Davis et al. [3])

Let $\mathfrak{p}(m ; d)$ to be the number of admissible pinnacle sets with maximum m and cardinality d.

We prove these constants are ballot numbers through a bijection between admissible pinnacle sets and ballot sequences.

Ballot Sequence

A (p, q) ballot sequence is a permutation $\beta=\beta_{1} \beta_{2} \ldots \beta_{p+q}$ of p copies of the letter X and q copies of the letter Y such that in any nonempty prefix $\beta_{1} \beta_{2} \ldots \beta_{i}$ the number of X 's is greater than the number of Y 's. Let

$$
\mathcal{B}_{p, q}=\{\beta \mid \beta \text { is a }(p, q) \text { ballot sequence }\} .
$$

$$
\beta=X X X Y X X Y \vee, \quad \beta=X X Y Y X X Y \times
$$

A Bijection to Ballot Sequences

For nonnegative integers $p>q$, we have $\# \mathcal{B}_{p, q}=\frac{p-q}{p+q}\binom{p+q}{q}$ (see $[1,2]$).

The Bijection

Let $\mathfrak{P}(m, d)=\{S \mid S$ admissible with $\max S=m$ and $\# S=d\}$ so that $\# \mathfrak{P}(m, d)=\mathfrak{p}(m, d)$. For $m>2 d$, define a map $\eta: \mathcal{B}_{m-d, d-1} \rightarrow \mathfrak{P}(m, d)$ by sending ballot sequence
$\beta=\beta_{1} \beta_{2} \ldots \beta_{m-1}$ to

$$
\eta(\beta)=\left\{i \mid \beta_{i}=Y\right\} \uplus\{m\} .
$$

$$
\beta=X X X \mathbf{Y} X X \mathbf{Y} \quad \Longleftrightarrow \quad\{4,7,8\} \quad \Longleftrightarrow \quad \pi=18524376
$$

- Well-Defined: Since $\beta \in \mathcal{B}_{m-d, d-1}$, the set $\left\{i \mid \beta_{i}=Y\right\} \subset[m-1]$ with cardinality $d-1$.
- Admissible: Shown in [3] that $S=\left\{s_{1}<s_{2}<\cdots<s_{d}\right\}$ is admissible $\Leftrightarrow s_{i}>2 i$ for all i. Here s_{i} is the index of the i th Y. Since β a ballot sequence, there are $\geq i+1$ copies of X.
- Inverse: For $S \in \mathfrak{P}(m, d)$, let $\eta^{-1}(S)=\beta_{1} \beta_{2} \ldots \beta_{m-1}$ where $\beta_{i}=X$ if $i \notin S, Y$ otherwise.

Conclusion

This bijection with ballot sequences gives the exact counts of the number of admissible pinnacle sets S with maximum m and cardinality d.

Theorem

If $m, d \in \mathbb{P}$ with $m>2 d$, then

$$
\mathfrak{p}(m ; d)=\frac{m-2 d+1}{m-1}\binom{m-1}{d-1}=\# \mathcal{B}_{m-d, d-1}
$$

Preprint:
https://arxiv.org/abs/2105.10388

[1] André, D. (1887). Solution directe du probleme résolu par m. bertrand. CR Acad. Sci. Paris, 105(436):7.
[2] Bertrand, J. (1887). Solution d'un problème. Comptes Rendus de l'Académie des Sciences de Paris, (105):369.
[3] Davis, R., Nelson, S. A., Kyle Petersen, T., and Tenner, B. E. (2018). The pinnacle set of a permutation. Discrete Mathematics, 341(11):3249-3270.

