Two Equators of the Permutohedron

Joshua Cooper

with Rory Mitchell (Nvidia), Eibe Frank (U Waikato), & Geoffrey Holmes (U Waikato)

Permutation Patterns 2021 June 15, 2021 **Definition**. The order-*n* permutohedron is the convex polytope whose vertices are all *n*-vectors whose coordinates are a permutations of $\{1, ..., n\}$.

Definition. The order-*n* permutohedron is the convex polytope whose vertices are all *n*-vectors whose coordinates are a permutations of $\{1, ..., n\}$.

Facts:

- *n*! vertices
- There are n 1 edges containing each vertex σ , ending at each σ' which differs from σ by an adjacent transposition.
- Thus, its 1-skeleton is the Hasse diagram of the weak Bruhat order on S_n (and a Cayley graph)
- Since sum of coordinates is always $\binom{n+1}{2}$, dimension is n-1.

Definition. The order-*n* permutohedron is the convex polytope whose vertices are all *n*-vectors whose coordinates are a permutations of $\{1, ..., n\}$.

Facts:

- *n*! vertices
- There are n 1 edges containing each vertex σ , ending at each σ' which differs from σ by an adjacent transposition.
- Thus, its 1-skeleton is the Hasse diagram of the weak Bruhat order on S_n (and a Cayley graph)
- Since sum of coordinates is always $\binom{n+1}{2}$, dimension is n-1.

Estimating feature importances is a fundamental problem in machine learning (ML). In general, NP-hard.

Adopting every feature one at a time over all orderings/permutations and computing the average impact on their marginal values can be informative – this is exactly their Shapley values.

Shapley value: a way to measure how important different features are, *taking into account the impact on multi-factor/coalitional importance*

Considering all possible permutations of the n features is prohibitively expensive, we ask: can one obtain a quasi-random set of permutations that estimates well?

To ensure a set is well-distributed, one could sample a random set of (nearly) *orthogonal* permutations. However, the *kernel* matters a lot here.

Definition. Given two permutations σ and σ' , the Kendall τ kernel is given by

$$K_{\tau}(\sigma,\sigma') = 1 - \frac{2 \cdot \operatorname{inv}(\sigma^{-1}\sigma')}{\binom{n}{2}}$$

Note: $K_{\tau}(\sigma, \sigma') = 1$ iff $\sigma = \sigma', K_{\tau}(\sigma, \sigma') = -1$ iff σ is the reverse of σ' , and $K_{\tau}(\sigma, \sigma') = 0$ iff $\sigma^{-1}\sigma'$ is at the middle level of the Bruhat order.

"combinatorial equator"

Choosing orthogonal vectors w.r.t. Kendall τ is slow/hard. Maybe it's almost the same as the **geometric equator**? That is, project σ and σ' by the affine map $A(\cdot)$ that centers & normalizes the permutohedron, and seek dot-product orthogonality.

$$-2 + 3K_{\tau}(\sigma, \sigma') + 4\left(\frac{1 - K_{\tau}(\sigma, \sigma')}{2}\right)^{\frac{3}{2}} \le A(\sigma)^{T}A(\sigma') + O(n^{-1}) \le 2 + 3K_{\tau}(\sigma, \sigma') - 4\left(\frac{1 + K_{\tau}(\sigma, \sigma')}{2}\right)^{\frac{3}{2}}$$

dot product of the permutations

$$-2 + 3K_{\tau}(\sigma, \sigma') + 4\left(\frac{1 - K_{\tau}(\sigma, \sigma')}{2}\right)^{\frac{3}{2}} \le A(\sigma)^{T}A(\sigma') + O(n^{-1}) \le 2 + 3K_{\tau}(\sigma, \sigma') - 4\left(\frac{1 + K_{\tau}(\sigma, \sigma')}{2}\right)^{\frac{3}{2}}$$

Corollary. If $A(\sigma)^T A(\sigma') = o(1)$, then $|K_{\tau}(\sigma, \sigma')| \leq \frac{1}{2} + o(1)$.

Is this tight?

$$-2 + 3K_{\tau}(\sigma, \sigma') + 4\left(\frac{1 - K_{\tau}(\sigma, \sigma')}{2}\right)^{\frac{3}{2}} \le A(\sigma)^{T}A(\sigma') + O(n^{-1}) \le 2 + 3K_{\tau}(\sigma, \sigma') - 4\left(\frac{1 + K_{\tau}(\sigma, \sigma')}{2}\right)^{\frac{3}{2}}$$

Corollary. If $A(\sigma)^T A(\sigma') = o(1)$, then $|K_{\tau}(\sigma, \sigma')| \leq \frac{1}{2} + o(1)$.

Said another way: A permutation near the geometric equator of the permutohedron has between $\frac{1}{4}$ and $\frac{3}{4}$ of the $\binom{n}{2}$ possible inversions.

$$-2 + 3K_{\tau}(\sigma, \sigma') + 4\left(\frac{1 - K_{\tau}(\sigma, \sigma')}{2}\right)^{\frac{3}{2}} \le A(\sigma)^{T}A(\sigma') + O(n^{-1}) \le 2 + 3K_{\tau}(\sigma, \sigma') - 4\left(\frac{1 + K_{\tau}(\sigma, \sigma')}{2}\right)^{\frac{3}{2}}$$

Corollary. If $A(\sigma)^T A(\sigma') = o(1)$, then $|K_{\tau}(\sigma, \sigma')| \leq \frac{1}{2} + o(1)$.

Said another way: A permutation near the geometric equator of the permutohedron has between $\frac{1}{4}$ and $\frac{3}{4}$ of the $\binom{n}{2}$ possible inversions.

Is this tight?

감사합니다 dziękuję መລnke ευχαριστώ Dalu 응 及 Thank You Köszönöm Tack Спасибо Dank Gracias 街街 Merci ありがとう