Two Equators of the Permutohedron

Joshua Cooper

with Rory Mitchell (Nvidia), Eibe Frank (U Waikato), \& Geoffrey Holmes (U Waikato)

Permutation Patterns 2021
June 15, 2021

Definition. The order-n permutohedron is the convex polytope whose vertices are all n-vectors whose coordinates are a permutations of $\{1, \ldots, n\}$.

Definition. The order-n permutohedron is the convex polytope whose vertices are all n-vectors whose coordinates are a permutations of $\{1, \ldots, n\}$.

Facts:

- n ! vertices
- There are $n-1$ edges containing each vertex σ, ending at each σ^{\prime} which differs from σ by an adjacent transposition.
- Thus, its 1-skeleton is the Hasse diagram of the weak Bruhat order on \mathbf{S}_{n} (and a Cayley graph)
- Since sum of coordinates is always $\binom{n+1}{2}$, dimension is $n-1$.

Definition. The order-n permutohedron is the convex polytope whose vertices are all n-vectors whose coordinates are a permutations of $\{1, \ldots, n\}$.

Facts:

- n ! vertices
- There are $n-1$ edges containing each vertex σ, ending at each σ^{\prime} which differs from σ by an adjacent transposition.
- Thus, its 1-skeleton is the Hasse diagram of the weak Bruhat order on S_{n} (and a Cayley graph)
- Since sum of coordinates is always $\binom{n+1}{2}$, dimension is $n-1$.

Estimating feature importances is a fundamental problem in machine learning (ML). In general, NP-hard.

Adopting every feature one at a time over all orderings/permutations and computing the average impact on their marginal values can be informative - this is exactly their Shapley values.

Shapley value: a way to measure how important different features are, taking into account the impact on multi-factor/coalitional importance

Considering all possible permutations of the n features is prohibitively expensive, we ask: can one obtain a quasi-random set of permutations that estimates well?

To ensure a set is well-distributed, one could sample a random set of (nearly) orthogonal permutations. However, the kernel matters a lot here.

Definition. Given two permutations σ and σ^{\prime}, the Kendall τ kernel is given by

$$
K_{\tau}\left(\sigma, \sigma^{\prime}\right)=1-\frac{2 \cdot \operatorname{inv}\left(\sigma^{-1} \sigma^{\prime}\right)}{\binom{n}{2}}
$$

Note: $K_{\tau}\left(\sigma, \sigma^{\prime}\right)=1$ iff $\sigma=\sigma^{\prime}, K_{\tau}\left(\sigma, \sigma^{\prime}\right)=-1 \mathrm{iff} \sigma$ is the reverse of σ^{\prime}, and $K_{\tau}\left(\sigma, \sigma^{\prime}\right)=0$ iff $\sigma^{-1} \sigma^{\prime}$ is at the middle level of the Bruhat order.

"combinatorial equator"

Choosing orthogonal vectors w.r.t. Kendall τ is slow/hard. Maybe it's almost the same as the geometric equator? That is, project σ and σ^{\prime} by the affine map $A(\cdot)$ that centers \& normalizes the permutohedron, and seek dot-product orthogonality.

Theorem (Mitchell-C-Frank-Holmes '21+).

$$
-2+3 K_{\tau}\left(\sigma, \sigma^{\prime}\right)+4\left(\frac{1-K_{\tau}\left(\sigma, \sigma^{\prime}\right)}{2}\right)^{\frac{3}{2}} \leq A(\sigma)^{T} A\left(\sigma^{\prime}\right)+O\left(n^{-1}\right) \leq 2+3 K_{\tau}\left(\sigma, \sigma^{\prime}\right)-4\left(\frac{1+K_{\tau}\left(\sigma, \sigma^{\prime}\right)}{2}\right)^{\frac{3}{2}}
$$

dot product of the permutations

Theorem (Mitchell-C-Frank-Holmes '21+).

$$
-2+3 K_{\tau}\left(\sigma, \sigma^{\prime}\right)+4\left(\frac{1-K_{\tau}\left(\sigma, \sigma^{\prime}\right)}{2}\right)^{\frac{3}{2}} \leq A(\sigma)^{T} A\left(\sigma^{\prime}\right)+O\left(n^{-1}\right) \leq 2+3 K_{\tau}\left(\sigma, \sigma^{\prime}\right)-4\left(\frac{1+K_{\tau}\left(\sigma, \sigma^{\prime}\right)}{2}\right)^{\frac{3}{2}}
$$

Corollary. If $A(\sigma)^{T} A\left(\sigma^{\prime}\right)=o(1)$, then $\left|K_{\tau}\left(\sigma, \sigma^{\prime}\right)\right| \leq \frac{1}{2}+o(1)$.

Theorem (Mitchell-C-Frank-Holmes '21+).

$-2+3 K_{\tau}\left(\sigma, \sigma^{\prime}\right)+4\left(\frac{1-K_{\tau}\left(\sigma, \sigma^{\prime}\right)}{2}\right)^{\frac{3}{2}} \leq A(\sigma)^{T} A\left(\sigma^{\prime}\right)+O\left(n^{-1}\right) \leq 2+3 K_{\tau}\left(\sigma, \sigma^{\prime}\right)-4\left(\frac{1+K_{\tau}\left(\sigma, \sigma^{\prime}\right)}{2}\right)^{\frac{3}{2}}$

Corollary. If $A(\sigma)^{T} A\left(\sigma^{\prime}\right)=o(1)$, then $\left|K_{\tau}\left(\sigma, \sigma^{\prime}\right)\right| \leq \frac{1}{2}+o(1)$.

Said another way: A permutation near the geometric equator of the permutohedron has between $1 / 4$ and $3 / 4$ of the $\binom{n}{2}$ possible inversions.

Is this tight?

Theorem (Mitchell-C-Frank-Holmes '21+).

$-2+3 K_{\tau}\left(\sigma, \sigma^{\prime}\right)+4\left(\frac{1-K_{\tau}\left(\sigma, \sigma^{\prime}\right)}{2}\right)^{\frac{3}{2}} \leq A(\sigma)^{T} A\left(\sigma^{\prime}\right)+O\left(n^{-1}\right) \leq 2+3 K_{\tau}\left(\sigma, \sigma^{\prime}\right)-4\left(\frac{1+K_{\tau}\left(\sigma, \sigma^{\prime}\right)}{2}\right)^{\frac{3}{2}}$

Corollary. If $A(\sigma)^{T} A\left(\sigma^{\prime}\right)=o(1)$, then $\left|K_{\tau}\left(\sigma, \sigma^{\prime}\right)\right| \leq \frac{1}{2}+o(1)$.

Said another way: A permutation near the geometric equator of the permutohedron has between $1 / 4$ and $3 / 4$ of the $\binom{n}{2}$ possible inversions.

Is this tight?

This permutation is on the geometric equator

$$
\begin{gathered}
\operatorname{inv}(\sigma) \approx n^{2} 2^{-\frac{5}{3}} \\
\approx 63 \% \cdot\binom{n}{2}<75 \%\binom{n}{2} \\
K_{\tau}(\sigma, \mathrm{id}) \approx-.26>-1 / 2
\end{gathered}
$$

Спасибо Dank Gracias 응 O谢谢 －Seé ありがとう

