Permutations with exactly one copy of a monotone pattern of length k, and a generalization

Miklós Bóna and Alex Burstein

2021 Permutation Patterns Virtual Workshop June 15-16, 2021
(1) One copy of 321
(2) Injection for 321
(3) Generalization

4 Asymptotics and generating functions

Introduction

- Let $S_{n}(\sigma ; 1)$ be the set of permutations containing a single occurrence of pattern σ.
- Knuth (1968,1970): $\left|S_{n}(321)\right|=\left|S_{n}(231)\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$
- Simion, Schmidt (1985): bijection $g: S_{n}(321) \rightarrow S_{n}(231)$
- Preserves positions and values of right-to-left minima
- Noonan (1996): $\left|S_{n}(321 ; 1)\right|=\frac{3}{n}\binom{2 n}{n-3}$
- Bóna (1998): $\left|S_{n}(231 ; 1)\right|=\binom{2 n-3}{n-3}$
- $\lim _{n \rightarrow \infty} \frac{\left|S_{n}(321 ; 1)\right|}{\left|S_{n}(321)\right|}=3<\infty \quad$ vs. $\quad \lim _{n \rightarrow \infty} \frac{\left|S_{n}(231 ; 1)\right|}{\left|S_{n}(231)\right|}=\infty$

Containing a single copy of 321

B. (2011), Zeilberger (2011): Can enumerate $\left|S_{n}(321 ; 1)\right|$ more efficiently by splitting it into the single copy of 321 and two 321-avoiding permutations.

If $\pi \in A v_{n}(321 ; 1)$ and $c b a$ is the single occurrence of 321 in π, then

$$
\pi=\pi_{1} \mathrm{c} \pi_{2} \mathrm{~b} \pi_{3} \text { a } \pi_{4},
$$

where

$$
\begin{aligned}
& \pi_{1} \text { с } \pi_{2} a \in A v(321), \\
& c \pi_{3} \text { a } \pi_{4} \in A v(321) .
\end{aligned}
$$

$S_{n}(321 ; 1) \hookrightarrow S_{n+2}(231) \cong S_{n+2}(321)$

Define injection $f: S_{n}(321 ; 1) \rightarrow S_{n+2}(231)$ by

$$
\begin{aligned}
& \mathrm{f}: \pi=\pi_{1} \mathrm{c} \pi_{2} \mathrm{~b} \pi_{3} \text { a } \pi_{4} \mapsto \\
& \\
& 132\left[\mathrm{~g}\left(\operatorname{red}\left(\pi_{1} \mathrm{c} \pi_{2} \text { a }\right)\right), 1, \mathrm{~g}\left(\operatorname{red}\left(\mathrm{c} \pi_{3} \text { a } \pi_{4}\right)\right)\right]
\end{aligned}
$$

Equivalently,

- c $\mapsto b$,

$$
b \mapsto a(n+2)(c+1),
$$

$$
a \mapsto b+1
$$

- add 1 to every entry in π_{3} and π_{4} (to obtain π_{3}^{\prime} and π_{4}^{\prime}),
- apply g to $\pi_{1} b \pi_{2} a$ and to $(c+1) \pi_{3}^{\prime}(b+1) \pi_{4}^{\prime}$.

Right-to-left minima of π vs. $f(\pi)$ (other than a):

- positions and values preserved to the left of $n+2$;
- positions increased by 2 and values increased by 1 to the right of $n+2$.

Example

Example

Let $\pi=25147386 \in S_{8}(321 ; 1)$. Then $c=5, b=4, a=3$, $\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)=(2,1,7,86)$.

So $\pi_{1} \mathrm{~b} \pi_{2} \mathrm{a}=2413$ and $\mathrm{c} \pi_{3} \mathrm{~b} \pi_{4}=57486$, and hence $(c+1) \pi_{3}^{\prime}(b+1) \pi_{4}^{\prime}=68597$.

Therefore, $g\left(\pi_{1} b \pi_{2} a\right)=4213$ and $g\left((c+1) \pi_{3}^{\prime}(b+1) \pi_{4}^{\prime}\right)=96587$, so

$$
f(\pi)=42131096587 \in S_{10}(231)
$$

A generalization of f

The injection f can be generalized as follows:

Theorem (Main Injection)

For any $\mathrm{k} \geqslant 3$ and any pattern $\rho \in S_{k-3}$, there is an injection

$$
F_{k}: S_{n}(321 \ominus \rho ; 1) \hookrightarrow S_{n+2}(231 \ominus \rho)
$$

Recall also that $S_{n+2}(231 \ominus \rho) \cong S_{n+2}(321 \ominus \rho)$.

Proof of Main Injection

If p is a permutation, we say that entry p_{i} dominates entry p_{j} if $i<j$ and $p_{i}>p_{j}$. Likewise for p_{i} dominating a subsequence of entries.

Let $p \in S_{n}(321 \ominus \rho ; 1)$. Let π be the subsequence of all entries of p that dominate an occurrence of ρ in p (call those entries blue). Let τ be the rest of the entries and call those red.

Then π contains a single occurrence of 321 .

Proof of Main Injection (cont'd)

To obtain $\mathrm{F}_{\mathrm{k}}(\mathrm{p})$:

- replace the entries c, b, and a, respectively, with the entry b, block $a(n+2)(c+1)$, and the entry $b+1$, respectively, and color the new entries, except for $n+2$, blue;
- add 1 to every entry in π_{3} and π_{4} (to obtain π_{3}^{\prime} and π_{4}^{\prime}) and color the new entries blue;
- add 1 to every entry of τ greater than b and color the new entries red.
- apply the map g to the subsequences $\pi_{1} b \pi_{2}$ a and $(\mathrm{c}+1) \pi_{3}^{\prime}(\mathrm{b}+1) \pi_{4}^{\prime}$. This preserves the right-to-left minima, so these blue entries stay blue.

Note that in $F_{k}(p)$, as in p, no red entry dominates a blue entry.

Example of F_{k}

Let $\mathrm{k}=4, \rho=1$, so $321 \ominus \rho=4321$ and $231 \ominus \rho=3421$.

Example

Let $p=481593276 \in S_{9}(4321 ; 1)$. Then $\tau=126$ and $\pi=485937$ (the unique occurrence of 321 in π is marked in bold), so $p=481593276$ and $\pi_{1}=4, c=8, \pi_{2}=\varnothing, b=5$, $\pi_{3}=9, a=3$, and $\pi_{4}=7$. In $\tau, 1<b, 2<b$, while $6>b$. Replace entries of π as before and add 1 to the entries of τ greater than $b=5$ to obtain

$$
4513119106287 .
$$

Now replace subsequences $\pi_{1} \mathrm{~b} \pi_{2} \mathrm{a}=453$ with $\mathrm{g}(453)=543$ and $(c+1) \pi_{3}^{\prime}(b+1) \pi_{4}^{\prime}=9(10) 68$ with $g(9(10) 68)=(10) 968$, so that $f(\pi)=543(11)(10) 968$ and

$$
F_{4}(p)=5413111096287 \in S_{11}(3421)
$$

Rate of growth of $\left|S_{n}(321 \ominus \rho ; 1)\right|$

We also have an injection $S_{n-k}(321 \ominus \rho) \hookrightarrow S_{n}(321 \ominus \rho ; 1)$ by mapping $\sigma \mapsto \sigma \oplus(321 \ominus \rho)$.

So,

$$
\left|S_{n-k}(321 \ominus \rho)\right| \leqslant\left|S_{n}(321 \ominus \rho ; 1)\right| \leqslant\left|S_{n+2}(321 \ominus \rho)\right|
$$

Therefore,

$$
\left|S_{n}(321 \ominus \rho ; 1)\right| \quad \text { and } \quad\left|S_{n}(321 \ominus \rho)\right|
$$

are of the same exponential order.
E.g. of exp. order $(k-1)^{2}$ for $321 \ominus \rho=k \cdots 21=r\left(\mathrm{id}_{k}\right)$.

Generating function for $\left|S_{n}(321 \ominus \rho)\right|$

The above asymptotics let us prove the following result.

Theorem

Let $k \geqslant 3$ and $\rho \in \mathfrak{S}_{k-3}$, then the ordinary generating function for the sequence $\left|S_{n}(321 \ominus \rho ; 1)\right|$ is not rational.

Proof Idea: All singularities of rational functions are poles. But $\operatorname{ogf}\left(\left|S_{n}(321 \ominus \rho ; 1)\right|\right)$ takes a finite value at the dominant singularity (= radius of convergence).

Generating function for $\left|S_{n}(k \cdots 21)\right|$

Regev (1981): For $k \geqslant 2$, there exists a constant γ_{k} such that

$$
\left|S_{n}(k \cdots 21)\right| \simeq \gamma_{k} \frac{(k-1)^{2 n}}{n^{\left(k^{2}-2 k\right) / 2}}
$$

Notice: when $k>2$ is even, $-\frac{\mathrm{k}^{2}-2 \mathrm{k}}{2}$ is a negative integer.
This lets us prove the following result.

Theorem

Let $\mathrm{k}>2$ be an even integer. Then the generating function for $\left|S_{n}(k \cdots 21 ; 1)\right|$ is not algebraic.

Note: We can prove non-algebraicity for $\left|S_{n}(k \cdots 21 ; 1)\right|$ because we know precise asymptotics for $\left|S_{n}(k \cdots 21)\right|$.

Further questions

- Conjecture: For any r, there exists $\lim _{n \rightarrow \infty} \frac{\left|S_{n}(321 ; r)\right|}{\left|S_{n}(321)\right|}<\infty$.
- This would imply that $\operatorname{ogf}\left(\mid S_{n}(321 ; r \mid)\right.$ is non-rational.
- More precise asymptotics \rightsquigarrow non-algebraicity?
- Non-algebraicity for other families of patterns (non-monotone)? Again, need more precise asymptotics.

References

E. Babson, J. West, The permutations $123 p_{4} \cdots p_{t}$ and $321 p_{4} \cdots p_{t}$ are Wilf-equivalent, Graphs Combin. 16(4) (2000), 373-380.
M. Bóna, Permutations with one or two 132-subsequences. Discrete Math. 181 (1998), no. 1-3, 267-274.
M. Bóna, Combinatorics of Permutations, 2nd ed., CRC Press, 2012.
M. Bóna, Supercritical sequences, and the nonrationality of most principal permutation classes. Eur. J. Combin. 83 (2020), 103020, 8 pp.
A. Burstein, A short proof for the number of permutations containing pattern 321 exactly once. Electron. J. Combin. 18 (2011), no. 2, Paper 21, 3 pp.
P. Flajolet, Analytic Models and Ambiguity of Context-Free Languages, Theor. Comput. Sci. 49 (1987), 283-309.
P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
J. Noonan, The number of permutations containing exactly one increasing subsequence of length three. Discrete Math. 152 (1996) no 1-3, 307-313.
A. Regev, Asymptotic values for degrees associated with strips of Young diagrams. Adv. Math. 41 (1981) 115-136.
R. Simion, F. Schmidt, Restricted permutations. Eur. J. Combin. 6 (1985), no. 4, 383-406.
V. Vatter, Permutation classes. In: Handbook of Enumerative Combinatorics, Miklós Bóna, ed., CRC Press, 2015.
D. Zeilberger, Alexander Burstein's lovely combinatorial proof of John Noonan's beautiful theorem that the number of n-nermutations that contain the nattern 321 exactly once eauals

