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Introduction

Let Sn(σ; 1) be the set of permutations containing a single
occurrence of pattern σ.

Knuth (1968,1970): |Sn(321)| = |Sn(231)| = Cn = 1
n+1

(2n
n

)
Simion, Schmidt (1985): bijection g : Sn(321)→ Sn(231)

Preserves positions and values of right-to-left minima

Noonan (1996): |Sn(321; 1)| = 3
n

( 2n
n−3

)
Bóna (1998): |Sn(231; 1)| =

(2n−3
n−3

)
lim

n→∞ |Sn(321; 1)|
|Sn(321)|

= 3 <∞ vs. lim
n→∞ |Sn(231; 1)|

|Sn(231)|
= ∞
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Containing a single copy of 321

B. (2011), Zeilberger (2011): Can enumerate |Sn(321; 1)| more
efficiently by splitting it into the single copy of 321 and two
321-avoiding permutations.

c

b

aAv(321)

Av(321)

If π ∈ Avn(321; 1) and cba is the
single occurrence of 321 in π, then

π = π1 c π2 b π3 a π4,

where

π1 c π2 a ∈ Av(321),
c π3 a π4 ∈ Av(321).
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Sn(321; 1) ↪→ Sn+2(231) ∼= Sn+2(321)

Define injection f : Sn(321; 1)→ Sn+2(231) by

f : π = π1 c π2 b π3 a π4 7→
132[g(red(π1 c π2 a)), 1,g(red(c π3 a π4))]

Equivalently,
c 7→ b, b 7→ a (n+ 2) (c+ 1), a 7→ b+ 1,
add 1 to every entry in π3 and π4 (to obtain π ′3 and π ′4),
apply g to π1 b π2 a and to (c+ 1) π ′3 (b+ 1) π ′4.

Right-to-left minima of π vs. f(π) (other than a):
positions and values preserved to the left of n+ 2;
positions increased by 2 and values increased by 1 to the
right of n+ 2.
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Example

Example

Let π = 25147386 ∈ S8(321; 1). Then c = 5, b = 4, a = 3,
(π1,π2,π3,π4) = (2, 1, 7, 86).

So π1bπ2a = 2413 and cπ3bπ4 = 57486, and hence
(c+ 1)π ′3(b+ 1)π ′4 = 68597.

Therefore, g(π1bπ2a) = 4213 and
g((c+ 1)π ′3(b+ 1)π ′4) = 96587, so

f(π) = 4 2 1 3 10 9 6 5 8 7 ∈ S10(231).
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A generalization of f

The injection f can be generalized as follows:

Theorem (Main Injection)
For any k > 3 and any pattern ρ ∈ Sk−3, there is an injection

Fk : Sn(321	 ρ; 1) ↪→ Sn+2(231	 ρ)

Recall also that Sn+2(231	 ρ) ∼= Sn+2(321	 ρ).



Outline One copy of 321 Injection for 321 Generalization Asymptotics and generating functions

Proof of Main Injection

If p is a permutation, we say that entry pi dominates entry pj if
i < j and pi > pj. Likewise for pi dominating a subsequence of
entries.

Let p ∈ Sn(321	 ρ; 1). Let π be the subsequence of all entries
of p that dominate an occurrence of ρ in p (call those entries
blue). Let τ be the rest of the entries and call those red.

Then π contains a single occurrence of 321.
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Proof of Main Injection (cont’d)

To obtain Fk(p):

replace the entries c, b, and a, respectively, with the entry
b, block a (n+ 2) (c+ 1), and the entry b+ 1, respectively,
and color the new entries, except for n+ 2, blue;
add 1 to every entry in π3 and π4 (to obtain π ′3 and π ′4) and
color the new entries blue;
add 1 to every entry of τ greater than b and color the new
entries red.
apply the map g to the subsequences π1 bπ2 a and
(c+ 1)π ′3 (b+ 1)π ′4. This preserves the right-to-left
minima, so these blue entries stay blue.

Note that in Fk(p), as in p, no red entry dominates a blue entry.
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Example of Fk

Let k = 4, ρ = 1, so 321	 ρ = 4321 and 231	 ρ = 3421.

Example

Let p = 481593276 ∈ S9(4321; 1). Then τ = 126 and
π = 485937 (the unique occurrence of 321 in π is marked in
bold), so p = 481593276 and π1 = 4, c = 8, π2 = ∅, b = 5,
π3 = 9, a = 3, and π4 = 7. In τ, 1 < b, 2 < b, while 6 > b.
Replace entries of π as before and add 1 to the entries of τ
greater than b = 5 to obtain

4 5 1 3 11 9 10 6 2 8 7.

Now replace subsequences π1bπ2a = 453 with g(453) = 543
and (c+ 1)π ′3(b+ 1)π ′4 = 9(10)68 with g(9(10)68) = (10)968,
so that f(π) = 543(11)(10)968 and

F4(p) = 5 4 1 3 11 10 9 6 2 8 7 ∈ S11(3421).
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Rate of growth of |Sn(321	 ρ; 1)|

We also have an injection Sn−k(321	 ρ) ↪→ Sn(321	 ρ; 1) by
mapping σ 7→ σ⊕ (321	 ρ).

So,

|Sn−k(321	 ρ)| 6 |Sn(321	 ρ; 1)| 6 |Sn+2(321	 ρ)|.

Therefore,

|Sn(321	 ρ; 1)| and |Sn(321	 ρ)|

are of the same exponential order.

E.g. of exp. order (k− 1)2 for 321	 ρ = k · · ·21 = r(idk).
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Generating function for |Sn(321	 ρ)|

The above asymptotics let us prove the following result.

Theorem
Let k > 3 and ρ ∈ Sk−3, then the ordinary generating function
for the sequence |Sn(321	 ρ; 1)| is not rational.

Proof Idea: All singularities of rational functions are poles. But
ogf(|Sn(321	 ρ; 1)|) takes a finite value at the dominant
singularity (= radius of convergence).
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Generating function for |Sn(k · · ·21)|

Regev (1981): For k > 2, there exists a constant γk such that

|Sn(k · · ·21)| ' γk
(k− 1)2n

n(k2−2k)/2

Notice: when k > 2 is even, −k2−2k
2 is a negative integer.

This lets us prove the following result.

Theorem
Let k > 2 be an even integer. Then the generating function for
|Sn(k · · ·21; 1)| is not algebraic.

Note: We can prove non-algebraicity for |Sn(k · · ·21; 1)|
because we know precise asymptotics for |Sn(k · · ·21)|.
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Further questions

Conjecture: For any r, there exists lim
n→∞ |Sn(321; r)|

|Sn(321)|
<∞.

This would imply that ogf(|Sn(321; r|) is non-rational.

More precise asymptotics non-algebraicity?

Non-algebraicity for other families of patterns
(non-monotone)? Again, need more precise asymptotics.
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