Permutations avoiding sets of patterns with long monotone subsequences

Miklós Bóna and Jay Pantone

June 15, 2021

Let A_{k} be the set of k patterns of length k that start with an increasing subsequence of length $k-1$.

For instance,

$$
A_{5}=\{12345,12354,12453,13452,23451\} .
$$

Permutation $p=p_{1} p_{2} \cdots p_{n}$ avoids A_{k} if and only if the subsequence $p_{1} p_{2} \cdots p_{n-1}$ avoids $12 \cdots(k-1)$.

Therefore,

$$
\begin{equation*}
\operatorname{Av}_{A_{k}}(n)=n A v_{12 \cdots(k-1)}(n-1) \tag{1}
\end{equation*}
$$

This gets more interesting if we remove one element of A_{k}. Let $A_{k, i}=A_{k} \backslash\{12 \cdots k i\}$, that is, the set A_{k} with its element ending in i removed.

It is clear that for each $i \leq k$, the chain of inequalities $(k-2)^{2} \leq L\left(A_{k, i}\right) \leq(k-1)^{2}$ holds.

The interesting question is where in the interval $\left[(k-2)^{2},(k-1)^{2}\right]$ are the growth rates $L\left(A_{i, k}\right)$ located.

When $2 \leq i \leq k-1$

If a permutation p avoids $A_{k, i}$, but contains an increasing subsequence of length $k-1$, then the set of entries of p that follow the last entry of that increasing subsequence is very restricted. This leads to the following theorem.

Theorem
For all $k \geq 3$, and all $2 \leq i \leq k-1$, the equality

$$
L\left(A_{k, i}\right)=(k-2)^{2}
$$

holds.

When $i=k$

The case of $i=k$ leads to a different result.

Theorem
For $k \geq 3$, the equality

$$
L\left(A_{k, k}\right)=(k-2)^{2}+1
$$

holds.

The proof uses the Robinson-Schensted correspondence, in a little bit deeper way than in the last case.

When $i=1$

While we are not able to rigorously compute $L\left(A_{k, 1}\right)$ for $k>4$, or even just $L\left(A_{5,1}\right)$, we could to instead rigorously compute the first 642 terms of the counting sequence of $A v_{5,1}(n)$.

This led to very strong numerical evidence suggesting that $L\left(A_{5,1}\right)=9$.

Data suggest that the numbers $\mathrm{Av}_{5,1}(n)$ grow as $C 9^{n} / n^{3}$. This would imply that the generating function of the sequence $A v_{5,1}(n)$ is not algebraic.

Even more strongly, data suggest that the generating function is not even d-finite.

Further directions

We have an injective proof of the following result.

Theorem
For all positive integers n, and all $k \geq 3$, the inequality

$$
A v_{n}\left(A_{k, k-1}\right) \leq A v_{n}\left(A_{k, k}\right)
$$

holds.

Data suggest that

- the sequences $A v_{5,2}(n), A v_{5,3}(n)$, and $A v_{5,4}(n)$ grow as $C 9^{n} / n^{3}$,
- the sequence $\mathrm{Av}_{5,5}(n)$ grows as $C 10^{n} / n^{4}$,
- On the other hand, $\mathrm{Av}_{6,1}(n)$ seems to grow as $C 16^{n} / n^{6} .5$, which could allow for an algebraic generating function.

