

Permutation limits at infinitely many scales

David Bevan University of Strathclyde

Permutation Patterns 2021

15th June 2021

Global limits: permutons

Global limits: permutons

Definition (permuton)

Probability measure μ **on** the σ -algebra of Borel sets of **the unit** square $[0, 1]^2$ such that μ has uniform marginals:

 $\mu([a,b]\times [0,1]) \ = \ \mu([0,1]\times [a,b]) \ = \ b-a \ \text{ for every } \ 0\leqslant a\leqslant b\leqslant 1$

Definition (pattern density)

If $\sigma \in S_n$ and $\pi \in S_k$, and $\nu(\pi, \sigma)$ is the number of occurrences of π in σ , then $\rho(\pi, \sigma) = \nu(\pi, \sigma) / {n \choose k}$.

Definition (convergence)

If $|\sigma_j| \to \infty$, then $(\sigma_j)_{j \in \mathbb{N}}$ is convergent if $\rho(\pi, \sigma_j)$ converges for every pattern π .

Example

Looking through a window:

Looking through a window:

• 1 has width 3; 2 have width 4

Looking through a window:

• 1 has width 3; 2 have width 4

Looking through a window:

• 1 has width 3; 2 have width 4; 3 have width 5

Looking through a window:

• 1 has width 3; 2 have width 4; 3 have width 5

Looking through a window:

• 1 has width 3; 2 have width 4; 3 have width 5

Looking through a window:

- 1 has width 3; 2 have width 4; 3 have width 5
- 6 have width at most 5

Pattern density at scale 5

- 34 possible choices of three points with width at most 5
- Density of π in σ at scale 5: $\rho_5(\pi, \sigma) = 6/34 = 3/17$.

Convergence at a given scale

Typically, the scale (width of window) f = f(n) depends on $n = |\sigma_j|$.

Definition (convergence at scale f)

If $|\sigma_j| \to \infty$, then $(\sigma_j)_{j \in \mathbb{N}}$ is convergent at scale *f* if $\rho_f(\pi, \sigma_j)$ converges for every pattern π .

Convergence at a given scale

Typically, the scale (width of window) f = f(n) depends on $n = |\sigma_j|$.

Definition (convergence at scale f)

If $|\sigma_j| \to \infty$, then $(\sigma_j)_{j \in \mathbb{N}}$ is convergent at scale *f* if $\rho_f(\pi, \sigma_j)$ converges for every pattern π .

Independence of limits at different scales

We can use *inflation* to give different limits at different scales.

$$\iota_k = 123\ldots k \qquad \qquad \delta_k = k\ldots 321$$

Independence of limits at infinitely many scales

Infinitely many limits

We can construct a sequence of permutations $(\zeta_j)_{j \in \mathbb{N}}$ such that, for each irreducible $p/q \in \mathbb{Q} \cap (0, 1]$, we have

$$\zeta_j \xrightarrow{n^{p/q}} \mu_{p,q}.$$

B., Independence of permutation limits at infinitely many scales. arXiv:2005:11568

We may choose limits independently, in two directions, at a countably infinite number of scales:

Theorem

Let $\{f_t : t \in \mathbb{N}\}\$ be any set of scaling functions totally ordered by domination.[†]

For each $t \in \mathbb{N}$, let Ξ_t and Ξ'_t be any scale-specific limits.

Then there exists a sequence of permutations $(\tau_j)_{j \in \mathbb{N}}$ which converges to Ξ_t at scale f_t for each t, such that $(\tau_j^{-1})_{j \in \mathbb{N}}$ converges to Ξ'_t at scale f_t for each t.

[†]For every $f_i \neq f_j$, either $f_i \ll f_j$ or $f_j \ll f_i$.

Questions

Which random permutons are scale-specific limits?

Sometimes we get the same limit at every scale *f* such that $1 \ll f \ll n$.

Definition (scalable convergence)

If $|\sigma_j| \to \infty$, then $(\sigma_j)_{j \in \mathbb{N}}$ is scalably convergent if, for every pattern π there exists ρ_{π} such that $\rho_f(\pi, \sigma_j) \to \rho_{\pi}$ for every f such that $1 \ll f \ll n$.

Can scalable limits be represented by random *tiered* permutons?