Universal 321-avoiding permutations

Bogdan Alecu Vadim Lozin Dmitriy Malyshev

June 13, 2021

The search for universal permutations

The search for universal permutations

Problems related to finding the smallest object containing all permutations of a given size have been around for a while (see survey by Engen and Vatter, 2021).

The search for universal permutations

Problems related to finding the smallest object containing all permutations of a given size have been around for a while (see survey by Engen and Vatter, 2021).

- How big is the smallest permutation containing all n-element permutations as subpatterns?

The search for universal permutations

Problems related to finding the smallest object containing all permutations of a given size have been around for a while (see survey by Engen and Vatter, 2021).

- How big is the smallest permutation containing all n-element permutations as subpatterns?
At least n^{2} / e^{2}, at most n^{2}. (Arratia, 1999)

The search for universal permutations

Problems related to finding the smallest object containing all permutations of a given size have been around for a while (see survey by Engen and Vatter, 2021).

- How big is the smallest permutation containing all n-element permutations as subpatterns?
At least n^{2} / e^{2}, at most n^{2}. (Arratia, 1999)
- How big is the smallest permutation containing all n-element 321-avoiding permutations as subpatterns?

The search for universal permutations

Problems related to finding the smallest object containing all permutations of a given size have been around for a while (see survey by Engen and Vatter, 2021).

- How big is the smallest permutation containing all n-element permutations as subpatterns?
At least n^{2} / e^{2}, at most n^{2}. (Arratia, 1999)
- How big is the smallest permutation containing all n-element 321-avoiding permutations as subpatterns?
At most $O\left(n^{3 / 2}\right)$. (Bannister, Devanny, Eppstein, 2014)

The search for universal permutations

Problems related to finding the smallest object containing all permutations of a given size have been around for a while (see survey by Engen and Vatter, 2021).

- How big is the smallest permutation containing all n-element permutations as subpatterns?
At least n^{2} / e^{2}, at most n^{2}. (Arratia, 1999)
- How big is the smallest permutation containing all n-element 321-avoiding permutations as subpatterns?
At most $O\left(n^{3 / 2}\right)$. (Bannister, Devanny, Eppstein, 2014)
- How big is the smallest 321-avoiding permutation containing all n-element 321 -avoiding permutations as subpatterns?

The search for universal permutations

Problems related to finding the smallest object containing all permutations of a given size have been around for a while (see survey by Engen and Vatter, 2021).

- How big is the smallest permutation containing all n-element permutations as subpatterns?
At least n^{2} / e^{2}, at most n^{2}. (Arratia, 1999)
- How big is the smallest permutation containing all n-element 321-avoiding permutations as subpatterns?
At most $O\left(n^{3 / 2}\right)$. (Bannister, Devanny, Eppstein, 2014)
- How big is the smallest 321-avoiding permutation containing all n-element 321-avoiding permutations as subpatterns?
At most n^{2}. (Atminas, Lozin, Kitaev, Valyuzhenich, 2013)

The search for universal permutations

Problems related to finding the smallest object containing all permutations of a given size have been around for a while (see survey by Engen and Vatter, 2021).

- How big is the smallest permutation containing all n-element permutations as subpatterns?
At least n^{2} / e^{2}, at most n^{2}. (Arratia, 1999)
- How big is the smallest permutation containing all n-element 321-avoiding permutations as subpatterns?
At most $O\left(n^{3 / 2}\right)$. (Bannister, Devanny, Eppstein, 2014)
- How big is the smallest 321-avoiding permutation containing all n-element 321-avoiding permutations as subpatterns?
At most n^{2}. (Atminas, Lozin, Kitaev, Valyuzhenich, 2013)
Today: at least $\Omega\left(n^{\alpha}\right)$, for any $\alpha<2$. (A., Lozin, Malyshev, 2020)

Bipartite permutation graphs

Bipartite permutation graphs

Look at the inversion graphs of 321-avoiding permutations. Those are the bipartite permutation graphs.

Bipartite permutation graphs

Look at the inversion graphs of 321-avoiding permutations. Those are the bipartite permutation graphs.

Theorem (Lozin, Rudolf, 2007)

Any bipartite permutation graph on n vertices can be embedded into $H_{n, n}$:

Figure: The graph $H_{4,4}$.

Sketch of the proof

Lemma

Let H be a bipartite permutation graph containing all n-vertex bipartite permutation graphs as induced subgraphs. Then $|V(H)|=\Omega\left(n^{3 / 2}\right)$.

Sketch of the proof

Lemma

Let H be a bipartite permutation graph containing all n-vertex bipartite permutation graphs as induced subgraphs. Then $|V(H)|=\Omega\left(n^{3 / 2}\right)$.

Idea: count the pairs of vertices in H. Show there are $\Omega\left(n^{3}\right)$.

Sketch of the proof

Lemma

Let H be a bipartite permutation graph containing all n-vertex bipartite permutation graphs as induced subgraphs. Then $|V(H)|=\Omega\left(n^{3 / 2}\right)$.

Idea: count the pairs of vertices in H. Show there are $\Omega\left(n^{3}\right)$.
Find S of size linear in n, and for each $d \in S$, find two linearly sized subsets $X, Y \subseteq V(H)$ with $\operatorname{dist}_{H}(x, y)=d$ for each $x \in X, y \in Y$.

Sketch of the proof

Lemma

Let H be a bipartite permutation graph containing all n-vertex bipartite permutation graphs as induced subgraphs. Then $|V(H)|=\Omega\left(n^{3 / 2}\right)$.

Idea: count the pairs of vertices in H. Show there are $\Omega\left(n^{3}\right)$.
Find S of size linear in n, and for each $d \in S$, find two linearly sized subsets $X, Y \subseteq V(H)$ with $\operatorname{dist}_{H}(x, y)=d$ for each $x \in X, y \in Y$.

A "rigid" structure:

Sketch of the proof

Lemma

Let H be a bipartite permutation graph containing all n-vertex bipartite permutation graphs as induced subgraphs. Then $|V(H)|=\Omega\left(n^{3 / 2}\right)$.

Idea: count the pairs of vertices in H. Show there are $\Omega\left(n^{3}\right)$.
Find S of size linear in n, and for each $d \in S$, find two linearly sized subsets $X, Y \subseteq V(H)$ with $\operatorname{dist}_{H}(x, y)=d$ for each $x \in X, y \in Y$.

A "rigid" structure:

Sketch of the proof

Lemma

Let H be a bipartite permutation graph containing all n-vertex bipartite permutation graphs as induced subgraphs. Then $|V(H)|=\Omega\left(n^{3 / 2}\right)$.

Idea: count the pairs of vertices in H. Show there are $\Omega\left(n^{3}\right)$.
Find S of size linear in n, and for each $d \in S$, find two linearly sized subsets $X, Y \subseteq V(H)$ with $\operatorname{dist}_{H}(x, y)=d$ for each $x \in X, y \in Y$.

A "rigid" structure:

Thank you for your attention!

苟
B. Alecu, V. Lozin, D. Malyshev, Critical properties of bipartite permutation graphs. European J. Combin., Submitted (2020). Preprint available at https://arxiv.org/abs/2010.14467.
R. A. Arratia, On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern. Electron. J. Combin. 6 (1999), Note 1, 4 pp.
A. Atminas, V. Lozin, S. Kitaev, A. Valyuzhenich, Universal graphs and universal permutations. Disc. Math., Algorithms and Applications 5(4) (2013).
M. J. Bannister, W. E. Devanny, D. Eppstein, Small Superpatterns for Dominance Drawing. 2014 Proceedings of the Meeting on Analytic Algorithmics and Combinatorics (ANALCO) (2014), pp. 92-103.
M. Engen, V. Vatter, Containing all permutations. Amer. Math. Monthly 128 (1) (2021), pp. 4-24.
V. Lozin, G. Rudolf, Minimal universal bipartite graphs. Ars Combin. 84 (2007), pp. 345-356.

