Rowmotion on 321-avoiding Permutations

Ben Adenbaum (joint work with Sergi Elizalde)

Dartmouth College

June 16, 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (\mathbf{A}^n root poset)

Let \mathbf{A}^n denote the positive root poset of the A_n root system. Equivalently this is the set of intervals with endpoints in $\{1, 2, ..., n\}$ ordered by inclusion.

Definition (Exc Bijection)

Let $\pi \in S_n(321)$. Define $Exc(\pi)$ to be the antichain $\{[i, \pi(i) - 1] | i \text{ is an excedance of } \pi\}$ of \mathbf{A}^{n-1} .

Definition $(E_p, E_v, \text{ and } D_v \text{ Bijections})$

For $\pi \in S_n(321)$, define $E_p(\pi)$ to be the upper Dyck path whose peaks occur at the weak excedances of π , $E_v(\pi)$ to be the upper Dyck path whose valleys occur at the excedances of π . Similarly define $D_v(\pi)$ to be the lower Dyck path whose valleys occur at the deficiencies of π .

Example of Maps

Example

The red path is E_p of the permutation $\pi = 241358967$, as well as E_v of the permutation $\sigma = 312569478$, while the blue path is D_v of π . The crosses strictly above the diagonal correspond to $\text{Exc}(\pi)$ and the dots strictly above the diagonal correspond to $\text{Exc}(\sigma)$.

Definition (Antichain rowmotion)

Let A be an antichain of the poset P. Then $\rho_A(A)$ is defined to be the minimal elements of the complement of the order ideal generated by A.

Definition (Rowmotion on 321-avoiding Permutations)

Let $\pi \in S_n(321)$. Define

$$\rho_{\mathcal{S}}(\pi) = \mathsf{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathsf{Exc}(\pi) = E_{\mathsf{v}}^{-1} \circ E_{\mathsf{p}}(\pi)$$

Definition (Homomesy)

A statistic on a set S is *homomesic* under a group action if its average on each orbit is constant. More specifically, the statistic is said to be *c-mesic* if its average over each orbit is *c*.

Example (Rowmotion for $\pi = 241358967$)

Rowmotion starting at the 321-avoiding permutation $\pi = 241358967$. In the diagram on the left, the crosses represent the elements of π while the dots represent the elements of $\sigma = \rho_S(\pi) = 312569478$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition (h_i Statistic)

For $\pi \in S_n(321)$, define $h_i(\pi)$, for $1 \le i \le n-1$ by $h_i(\pi) = |\{j \in [i] : \pi(j) = i+1\}| + \chi_{\pi(i)>i} = \chi_{\pi^{-1}(i+1)<i+1} + \chi_{\pi(i)>i}$ where χ_B the indicator function for the statement B.

Definition (ℓ_i Statistic)

Define the statistics ℓ_i , where $1 \le i \le n$ and $\pi \in S_n(321)$, by letting

$$\ell_i(\pi) = |\{j \in [i] : \pi(j) = i\}| + \chi_{\pi(i) > i} = \chi_{\pi^{-1}(i) \le i} + \chi_{\pi(i) > i}.$$

Examples of h_i and ℓ_i Statistics

Visualization of the statistics h_i (left) and ℓ_i (right) on the permutation $\pi = 314267958$, as the number of crosses in the shaded squares of the permutation array, for i = 3. The darker square at the corner of the diagram on the left is counted twice. In this example, $h_3(\pi) = \ell_3(\pi) = 2$.

Theorem

The h_i statistic is 1-mesic under ρ_S for $1 \le i \le n-1$.

Theorem

The ℓ_i statistic is 1-mesic under ρ_S for $1 \le i \le n$.

Corollary

The fixed point statistic, denoted by fp, is 1-mesic under ρ_{S} .

Theorem

For all $\pi \in \mathcal{S}_n(321)$,

$$ext{sgn}(
ho_{\mathcal{S}}(\pi)) = egin{cases} -\operatorname{sgn}(\pi) & ext{if n is even,} \ \operatorname{sgn}(\pi) & ext{if n is odd.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

The numbers below each diagram are the values $\ell_2(\pi)$, $h_2(\pi)$, $fp(\pi)$ and $inv(\pi)$, from left to right.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

The numbers below each diagram are the values $\ell_2(\pi)$, $h_2(\pi)$, $fp(\pi)$ and $inv(\pi)$, from left to right.