Rowmotion on 321-avoiding Permutations

Ben Adenbaum
(joint work with Sergi Elizalde)
Dartmouth College
June 16, 2021

Definitions

Definition (\mathbf{A}^{n} root poset)

Let \mathbf{A}^{n} denote the positive root poset of the A_{n} root system. Equivalently this is the set of intervals with endpoints in $\{1,2, \ldots, n\}$ ordered by inclusion.

Definition (Exc Bijection)

Let $\pi \in \mathcal{S}_{n}(321)$. Define $\operatorname{Exc}(\pi)$ to be the antichain $\{[i, \pi(i)-1] \mid i$ is an excedance of $\pi\}$ of \mathbf{A}^{n-1}.

Definition (E_{p}, E_{v}, and D_{v} Bijections)

For $\pi \in \mathcal{S}_{n}(321)$, define $E_{p}(\pi)$ to be the upper Dyck path whose peaks occur at the weak excedances of $\pi, E_{v}(\pi)$ to be the upper Dyck path whose valleys occur at the excedances of π. Similarly define $D_{v}(\pi)$ to be the lower Dyck path whose valleys occur at the deficiencies of π.

Example of Maps

Example

The red path is E_{p} of the permutation $\pi=241358967$, as well as E_{v} of the permutation $\sigma=312569478$, while the blue path is D_{v} of π. The crosses strictly above the diagonal correspond to $\operatorname{Exc}(\pi)$ and the dots strictly above the diagonal correspond to $\operatorname{Exc}(\sigma)$.

Rowmotion

Definition (Antichain rowmotion)

Let A be an antichain of the poset P. Then $\rho_{\mathcal{A}}(A)$ is defined to be the minimal elements of the complement of the order ideal generated by A.

Definition (Rowmotion on 321-avoiding Permutations)

Let $\pi \in \mathcal{S}_{n}(321)$. Define

$$
\rho_{\mathcal{S}}(\pi)=\operatorname{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \operatorname{Exc}(\pi)=E_{v}^{-1} \circ E_{p}(\pi)
$$

Definition (Homomesy)

A statistic on a set S is homomesic under a group action if its average on each orbit is constant. More specifically, the statistic is said to be c-mesic if its average over each orbit is c.

Example of Rowmotion

Example (Rowmotion for $\pi=241358967$)

Rowmotion starting at the 321-avoiding permutation $\pi=241358967$. In the diagram on the left, the crosses represent the elements of π while the dots represent the elements of $\sigma=\rho_{\mathcal{S}}(\pi)=312569478$.

Some Permutation Statistics

Definition (h_{i} Statistic)

For $\pi \in \mathcal{S}_{n}(321)$, define $h_{i}(\pi)$, for $1 \leq i \leq n-1$ by
$h_{i}(\pi)=|\{j \in[i]: \pi(j)=i+1\}|+\chi_{\pi(i)>i}=\chi_{\pi^{-1}(i+1)<i+1}+\chi_{\pi(i)>i}$ where χ_{B} the indicator function for the statement B.

Definition (ℓ_{i} Statistic)

Define the statistics ℓ_{i}, where $1 \leq i \leq n$ and $\pi \in \mathcal{S}_{n}(321)$, by letting

$$
\ell_{i}(\pi)=|\{j \in[i]: \pi(j)=i\}|+\chi_{\pi(i)>i}=\chi_{\pi^{-1}(i) \leq i}+\chi_{\pi(i)>i}
$$

Examples of h_{i} and ℓ_{i} Statistics

Example

Visualization of the statistics h_{i} (left) and ℓ_{i} (right) on the permutation $\pi=314267958$, as the number of crosses in the shaded squares of the permutation array, for $i=3$. The darker square at the corner of the diagram on the left is counted twice. In this example, $h_{3}(\pi)=\ell_{3}(\pi)=2$.

Results

Theorem

The h_{i} statistic is 1-mesic under $\rho_{\mathcal{S}}$ for $1 \leq i \leq n-1$.

Theorem

The ℓ_{i} statistic is 1-mesic under $\rho_{\mathcal{S}}$ for $1 \leq i \leq n$.

Corollary

The fixed point statistic, denoted by fp , is 1-mesic under $\rho_{\mathcal{S}}$.

Theorem

For all $\pi \in \mathcal{S}_{n}(321)$,

$$
\operatorname{sgn}\left(\rho_{\mathcal{S}}(\pi)\right)= \begin{cases}-\operatorname{sgn}(\pi) & \text { if } n \text { is even } \\ \operatorname{sgn}(\pi) & \text { if } n \text { is odd }\end{cases}
$$

More Examples

Example

The numbers below each diagram are the values $\ell_{2}(\pi), h_{2}(\pi)$, $\mathrm{fp}(\pi)$ and $\operatorname{inv}(\pi)$, from left to right.

More Examples (cont)

The numbers below each diagram are the values $\ell_{2}(\pi), h_{2}(\pi)$, $\mathrm{fp}(\pi)$ and $\operatorname{inv}(\pi)$, from left to right.

