
PERMUTATION TABLEAUX AND PERMUTATION PATTERNSEINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSAbstrat. In this paper we introdue and study a lass of tableaux whihwe all permutation tableaux; these tableaux are naturally in bijetion withpermutations, and they are a distinguished subset of the �-diagrams of AlexPostnikov [7, 9℄. The struture of these tableaux is in some ways more transpar-ent than the struture of permutations; therefore we believe that permutationtableaux will be useful in furthering the understanding of permutations. Wegive two bijetions from permutation tableaux to permutations. The �rst bije-tion arries tableaux statistis to permutation statistis based on relative sizesof pairs of letters in a permutation and their plaes. We all these statistisweak exedane statistis beause of their lose relation to weak exedanes.The seond bijetion arries tableaux statistis (via the weak exedane sta-tistis) to statistis based on generalized permutation patterns. We then giveenumerative appliations of these bijetions. For example, we give generat-ing funtions enumerating permutation tableaux aording to their ontent,whih therefore enumerate permutations aording to the number of our-renes of various generalized patterns. We onlude our paper with a list ofopen problems. 1. IntrodutionThe aim of this artile is to advertise a new lass of tableaux together with twourious bijetions for the study of permutations. We all these tableaux permutationtableaux; they are naturally in bijetion with permutations, and are a distinguishedsubset of Alex Postnikov's �-diagrams [7℄, whih were enumerated by the seondauthor [9℄ beause of their onnetion with the totally nonnegative part of theGrassmannian.Reall that a partition � = (�1; : : : ; �k) is a weakly dereasing sequene of non-negative integers. For a partition �, where P�i = m, the Young diagram Y� ofshape � is a left-justi�ed diagram of m boxes, with �i boxes in the i-th row.We de�ne a permutation tableau T kn to be a partition � suh that Y� is ontainedin a k� (n� k) retangle, together with a �lling of the boxes of Y� with 0's and 1'ssuh that the following properties hold:(1) Eah olumn of the retangle ontains at least one 1.(2) There is no 0 whih has a 1 above it in the same olumn and a 1 to its leftin the same row.We all suh a �lling a valid �lling of Y�. Observe that the requirement in (1)implies that the Young diagram must have n� k olumns, whereas the number ofrows may be smaller than k.Date: July 9, 2005.Key words and phrases. Le-tableau, permutation patterns, permutation tableaux, q-analogs.The �rst author was partially supported by the European Commission's IHRP Programme,grant HPRN-CT-2001-00272, �Algebrai Combinatoris in Europe�.



2 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSIf we forget the requirement (1) above we reover the de�nition of a �-diagram [7℄.Figure 1 gives an example of a permutation tableau.
k = 7; n = 17� = (10; 9; 9; 8; 5; 2)k n� k

1 10 0 0 1 10 0 0 0 0 0 1 10 0 0 0 0 0 0 0 01 1 1 1 0 1 1 1 10 1 1 0 0 1 0 1 0 1
Figure 1. A permutation tableauWe will also think of a permutation tableau T kn as a k � (n � k) array of 0's,1's, and 2's, by simply taking the previous desription of a permutation tableauxand putting a 2 in every box of the retangle whih is not in Y�, as in Figure 2.We position the partition shape so that its top row lies at the top of the retangle;therefore the 2's ut out a (rotated) Young diagram in the southeast orner of theretangle.

k = 7; n = 17� = (10; 9; 9; 8; 5; 2)k n� k
2 2 2 2 2 2 2 2 2 21 1 2 2 2 2 2 2 2 20 0 0 1 1 2 2 2 2 20 0 0 0 0 0 1 1 2 20 0 0 0 0 0 0 0 0 21 1 1 1 0 1 1 1 1 20 1 1 0 0 1 0 1 0 1

Figure 2. Another representation of a permutation tableauPostnikov [8℄ has desribed a map that takes permutation tableaux ontained ina k�(n�k) retangle to permutations in Sn with k weak exedanes. In this paperwe give a simpler desription of this map, prove that it is a bijetion, and show thatthis map in fat preserves many more statistis. Namely, the numbers of 0's, 1'sand 2's, respetively, in a permutation tableau equal ertain linear ombinations ofertain statistis de�ned on the orresponding permutation. Eah of these statistisounts pairs of indies (i; j) in a permutation, aording to the relative sizes of theletters in those plaes and the plae numbers themselves. These statistis werede�ned by Corteel in [5℄.We then de�ne another bijetion, taking permutations to permutations andtranslating the statistis mentioned above into ertain linear ombinations of gen-eralized permutation patterns. These ombinations between them ontain preiselyhalf the generalized patterns of length 3 with one dash (see Setion 4).



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 3We onlude our paper by giving various enumerative appliations of our bije-tions. The struture of permutation tableaux is in many ways more transparentthan the struture of permutations, and hene lends itself more easily to enumer-ation. For example, by using our bijetions together with results of the seondauthor [9℄, we are able to give the entire distribution of permutations aordingto the number of ourrenes of the generalized pattern (2 31). This is the �rstsuh result for any pattern of length 3 (or more). However, this partiular result,although �rst onjetured by the present authors, was �rst proved by Corteel [5℄,whose work provided us with a ruial piee of the puzzle solved here.Another interesting onsequene of the results presented here is that the statistiounting permutation tableaux aording to the number of rows and number of 0'sis an Euler-Mahonian statisti, that is, has the same distribution as the bistatistion permutations onsisting of the number of desents and the major index. It fol-lows that if we de�ne Dk;n(p; q; r) to be the polynomial enumerating permutationtableaux T kn aording to the number of 0's, 1's, and 2's, then Dk;n(p; q; r) speial-izes to Carlitz' lassial q-analog of the Eulerian numbers [4℄, as well as to the morereent q-analog of the Eulerian numbers that was studied in [9℄.2. Bijetion from Permutation Tableaux to PermutationsIn this setion we desribe a bijetion � from permutation tableaux to permuta-tions. More preisely, � is a bijetion from permutation tableaux T kn to permuta-tions in the symmetri group Sn with k weak exedanes. Here, a weak exedaneof a permutation � is a value �(i) suh that �(i) � i. In this situation we say that iis a weak exedane bottom of � and that �(i) is a weak exedane top of �. To makethe notation less umbersome, we abbreviate these as wexbottoms and wextops, re-spetively. Non-weak exedane bottoms and non-weak exedane tops are de�nedin the obvious way, in terms of i and �(i) suh that �(i) < i, and are abbreviatednon-wexbots and non-wextops, respetively. The number of weak exedanes in �will be denoted wex�. Also, we let wexbotsum be the sum of all the wexbottomsin �.We remark that Postnikov [8℄ de�ned a map that is equal to � but his desrip-tion was muh more ompliated and went through the intermediate step of webdiagrams.Before giving the bijetion �, we must de�ne the diagram D(T kn ) assoiated withT kn as follows. Regard the south-east border of the partition Y� ontained in thek� (n� k) retangle as giving a path (the partition path) P = fPigni=1 of length nfrom the northeast orner of the retangle to the southwest orner of the retangle:label eah of the (unit) steps in this path with a number from 1 to n aording tothe order in whih the step was taken. Then, remove the 0's from T kn and replaeeah 1 in T kn with a vertex. We will all the top vertex in eah olumn a whitevertex and all other verties blak verties. Finally, from eah vertex v, draw anedge to the east and an edge to the south; eah suh edge should onnet v to eithera losest vertex in the same row or olumn, or to one of the labels from 1 to n. Theresulting piture is the diagram D(T kn ). See Figure 3.We now de�ne the permutation � = �(T kn ) via the following proedure. Foreah i 2 f1; : : : ; ng, �nd the orresponding position on D(T kn ) whih is labeled by i.If the label i is on a vertial step of P , start from this position and travel straightwest as far as possible on edges of D(T kn ). Then, take a �zig-zag� path southeast,



4 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMS
5 3218 7 6 4Figure 3. The diagram of a tableau. The topmost 1 in eaholumn beomes a white vertex, and the other 1's beome blakverties.
5 3218 7 6 4Figure 4. The paths taken by 1 and 6: �(1) = 7, �(6) = 2.by traveling on edges of D(T kn ) south and east and turning at eah opportunity(i.e. at eah new vertex). This path will terminate at some label j � i, and we let�(i) = j. If i is not onneted to any edge (equivalently, if there are no vertiesin the row of i) then we set �(i) = i. Similarly, if the label i is on a horizontalstep of P , start from this position and travel north as far as possible on edges ofD(T kn ). Then, as before, take a zig-zag path south-east, by traveling on edges ofD(T kn ) east and south, and turning at eah opportunity. This path will terminateat some label j < i, and we let �(i) = j.See Figure 4 for a piture of the path taken by i.The following three lemmas are lear from the onstrution above.Lemma 1. In �(T kn ), the letter i is a �xed point if and only if there is an entirerow in T kn that has no 1's and whose right hand edge is labeled by i. In partiular,n; n� 1; : : : ; n�m+1 are �xed points in � if and only if the bottom m rows of T kn(in the k � (n� k) retangle) onsist entirely of 2's.Lemma 2. Any direted step in a path on D(T kn ) determines the path ompletely.It follows that �(T kn ) is a permutation.As an example, if T kn is the permutation tableau whose diagram is given inFigures 3 and 4, then �(T kn ) = 74836215.



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 5Lemma 3. The weak exedane bottoms of � = �(T kn ) are preisely the labels onthe vertial edges of P . The non-weak exedane bottoms of � are preisely thelabels on the horizontal edges of P . In partiular, �(T kn ) is a permutation in Snwith preisely k weak exedanes.Theorem 4. The map � is a bijetion from permutation tableaux to permutations.Proof. To prove that � is a bijetion, we will give an expliit desription of itsinverse, again via an algorithmi proedure. First we need to de�ne a relative �xedpoint in any biword �a1 : : : anb1 : : : bn�, where the ai's are distint integers and the bi'salso. A relative �xed point is a pair (bp; ap) suh that if ap is the j-th smallestletter among the ai then bp is also the j-th smallest letter among the bi.For example, in �5 3 1 46 2 1 3�, the pair (2; 3) is a relative �xed point, sine eah isthe seond smallest letter in its row.Note that we will use the biword notation �a1 : : : an1 : : : n � as an alternative repre-sentation of the permutation a1 : : : an.Let � be the permutation �a1 : : : an1 : : : n �. We now give the proedure for omputing��1(�).0. Compute the weak exedane bottoms of � to get the shape of the partitionin T kn (see Lemma 3). Let ~� = �.1. Chek for relative �xed points in ~�. If (i; j) is a relative �xed point then �llwith 0's the as yet undetermined part of the row orresponding to the weakexedane bottom i. Reompute ~� by removing the relative �xed points.2. Suppose we have determined the ontent of the k rightmost olumns. Thenlook at the next olumn to the left, whih is indexed by a non-exedanebottom r (that is, by the label on the horizontal step at the bottom of thatolumn (Lemma 3)). Knowing that r ! ar in � uniquely determines theposition p of the highest 1 in the olumn orresponding to r, sine thereis a unique zig-zag path going bakwards (north-west) from ar to a box inthe olumn above i. Insert a 1 at that position and 0's in all boxes aboveit whih are in the same olumn. Also, insert 1's into all undeterminedboxes below p. (Note that we know that all nonzero boxes below positionp must also be 1's beause otherwise, if there were some 0 below the 1 theneverything to its left would have to be a 0 also, implying that we had arelative �xed point in ~�.) Redue ~� by removing the olumn �arr � fromthe biword for ~�. Go to step 1.It is lear from this onstrution that our resulting tableau T kn will be a permu-tation tableau. And it is easy to hek that the map desribed above is indeed theinverse of �. �Example 5. Let � = 514263. Sine � is in S6 and has three weak exedanes anda6 6= 6, our permutation tableau T kn will be ontained in a 3 � 3 retangle (theresulting tableau is shown in Figure 5). As in step 0, we want to �rst omputethe shape of the assoiated partition. Sine 1; 3; 5 are the wexbottoms, and 2; 4; 6are the non-wexbottoms, this uniquely determines a path (the partition path) from
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10 11 1 15 3 1
6 4 2

Figure 5. The permutation tableau for � = 514263the northeast orner of the retangle to the southwest orner of the retangle withvertial steps in positions 1; 3; 5 and horizontal steps in positions 2; 4; 6. That is, ourpartition has the shape (3; 2; 1). We now draw this partition, labeling the edges of itssoutheast border aordingly with the numbers 1; : : : ; 6, and set ~� = (5; 1; 4; 2; 6; 3).Going to step 1, we see that ~� has no relative �xed points.Going to step 2, the fat that 2 ! 1 in � implies that the rightmost olumn(whih onsists of a single box) ontains a 1 in the top row. We now redue thepermutation ~� = �5 1 4 2 6 31 2 3 4 5 6� by removing (2; 1), obtaining ~� = �5 4 2 6 31 3 4 5 6�.Going bak to step 1, we see that there are no relative �xed points in ~�.Going to step 2, sine 4 ! 2 in ~� it is lear that the highest box in the olumnindexed by 4 must ontain a 1. All undetermined boxes below this 1 must ontain1's also. We now redue the permutation ~� = �5 4 2 6 31 3 4 5 6� by removing 4 ! 2,obtaining ~� = �5 4 6 31 3 5 6�.Going bak to step 1, we now see that ~� has the relative �xed point (3; 4).Therefore the undetermined part of the row orresponding to 3 onsists of zeros.Now we redue the permutation ~� = �5 4 6 31 3 5 6�, obtaining ~� = �5 6 31 5 6�.Going to step 2, sine 6 ! 3 in ~� the top box in the olumn orresponding to6 has a 1. All undetermined boxes below that ontain 1's. We have now �lled inall olumns of the tableau � obtaining the permutation tableau in Figure 5 � so weare done. 3. How � translates statistisThe six permutation statistis in the following de�nition will be related to thestatistis reording the numbers of 0's, 1's and 2's in permutation tableaux. The�rst four of these re�ne Postnikov's de�nition of alignment [7℄ (see [9℄); all of thesestatistis were de�ned by Corteel [5℄;



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 7De�nition 6. Given a permutation � = a1a2 : : : an, letAEE(i) = fj j j < i � ai < ajg;ANN(i) = fj j aj < ai < i < jg;AEN(i) = fj j j � aj < ai < ig;ANE(i) = fj j ai < i < j � ajg;CEE(i) = fj j j < i � aj < aig;CNN(i) = fj j ai < aj < i < jg:We then set AEE(�) =Xi jAEE(i)j;and likewise for the other �ve statistis.Observe that if we draw the permutation as a hord diagram on a irle, as inFigure 6, then j 2 A��(i) means that the hords starting at i and j do not intersetand roughly �point in the same diretion�; we will say that this is an alignment oftype A��. And if j 2 C��(i) then the hords starting at i and j ross eah other; wewill say that this is a rossing of type C��. Note that the subsripts in our notationrefer to whether the positions i and j are wexbottoms or non-wexbottoms of thepermutation. For example, in Figure 6, the hords beginning at 3 and 5 form analignment of type ANE, and the hords beginning at 2 and 4 form a rossing oftype CNN.
12345 6 7 8

Figure 6. A hord diagram for the permutation 65187243Theorem 7. Let T (d; a; b; ) be the set of permutation tableaux with d rows, (n�d)olumns, a 0's, b 1's and  2's. LetM(d; a; b; ) be the set of all permutations � 2 Snwith � d = wex(�),� a = AEE(�) + ANN(�) + AEN(�),� b = CEE(�) + CNN(�),�  = ANE(�).Then jT (d; a; b; )j = jM(d; a; b; )j.To prove the above result, we will show that � is a bijetion from T (d; a; b; ) toM(d; a; b; ). The struture of the argument is as follows:



8 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMS� First we prove, in Proposition 8, that under �, the  20s in T kn orrespondto exatly  alignments of type ANE in �.� Seond, in Proposition 9, we prove that CEE(�)+CNN(�) equals the numberof blak verties in the diagram D. This implies that CEE(�) + CNN(�) =b� (n� k).� We omplete the proof with the following argument. Let m = AEE(�) +ANN(�)+AEN(�). We know that a+b+ = k(n�k). Corteel [5℄ proved thatAEE(�)+ANN(�)+AEN(�)+ANE(�)+CEE(�)+CNN(�) = (k�1)(n�k).Thereforem++b�(n�k) = (k�1)(n�k), whih implies that m++b =k(n� k) = a+ b+ , and hene m = a.Proposition 8. If �(T kn ) = � then the number of 2's in T kn is equal to the numberof alignments of type ANE in �.Proof. Reall that if � = �(T kn ) then the wexbottoms and the non-wexbottomsof � orrespond to the labels of the vertial and horizontal steps, respetively, inthe south east border of the partition underlying T kn . Note that the position ofevery 2 in T kn an be given by speifying the label of the edge above it and the edgeto its left. The label i of the edge above it will be a non-wexbottom, and the labelj > i of the edge to its left will be a weak exedane bottom. Sine j > i, and jis a wexbottom, and i is a non-wexbottom, the pair (i; j) is preisely an alignmentof type ANE. Conversely, any alignment of type ANE is a pair (i; j) where i < j,and i is a non-wexbottom, and j is a wexbottom. This implies that i is the label ofa horizontal step, and j is the label of a vertial step. The fat that i < j impliesthat the box of the tableau indexed as above by i and j ontains a 2. �Proposition 9. Under the bijetion �, there is a one-to-one orrespondene be-tween blak verties in the diagram of the permutation tableau, and rossings oftypes CEE and CNN in the permutation.Proof. Reall that blak verties orrespond to those 1's in a tableau that are nottopmost in their olumns. Let D be the diagram of T kn , and let � = (a1; : : : ; an) be�(T kn ). We will onstrut a map � (indued by �) whih takes eah rossing (i; j)(where i < j) of type CEE or CNN in � to a blak vertex d in D, and show that thisis a bijetion. The map � is de�ned as follows. Let (i; j) be a rossing of type CEEor CNN. We laim that the paths (i! ai) and (j ! aj) interset in a unique edge.If that edge is horizontal, then let d be the left vertex of the edge. If that edge isvertial, then let d be the bottom vertex of the edge.First we need to show that the paths (i! ai) and (j ! aj) interset in an edge.We will prove this when (i; j) is a rossing of type CEE; the proof for CNN is similar.Sine i < j and ai < aj , it is lear that the paths must ross eah other at leastone.Consider the �rst point x at whih the path (j ! aj) intersets the path (i! ai).We will show that the intersetion here will ontain an edge. Clearly this interse-tion must be in the zig-zag portion of the path (i! ai). If we let d1; d2; : : : ; dt bethe sequene of verties enountered by the path (i ! ai) in its zig-zag portion,then, by onstrution of that path, there are no verties in the diagram D betweenany dr and dr+1. Note that if the path (j ! aj) intersets the path (i ! ai) inonly the point x (rather than an edge ontaining x), then it is easy to see�usingondition (2) in the de�nition of permutation tableaux�that x must atually be avertex in D, loated between some dr and dr+1. This is a ontradition.



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 9Next, we show that the paths (i! ai) and (j ! aj) interset in a unique edge.If the two paths were to interset a seond time (and they may indeed intersetagain in a vertex), then this intersetion must take plae in the zig-zag portion ofboth paths. Suh a point e of intersetion must be approahed via a south step by(i! ai) and must be approahed via an east step by (j ! aj). But then, aordingto the proedure de�ning �, the path (i! ai) will immediately turn east, and thepath (j ! aj) will immediately turn south. Therefore this intersetion is not anedge intersetion.We have thus shown that � indues a well-de�ned map from rossings to blakverties. We will now show that this map is a bijetion by onstruting its inverse.Namely, to eah blak vertex in D we need to produe a rossing of type CEE orCNN. We do this as follows. Given a blak vertex d, there is a path (i! ai) on Dwhih enters d by going south, and then leaves d going east. (It is easy to see thatsuh a path exists by traing bakwards through the algorithm that de�ned themap �.)If the path (i ! ai) is an exedane, then onsider the unique path (j ! aj)whih enters d traveling west. This path must be a weak exedane, as it is only thepaths of weak exedanes whih ontain steps to the west. Moreover, (i; j) mustform a rossing of type CEE, sine the two paths interset in an edge (and we haveseen that two paths whih are both weak exedanes may not interset in an edgemore than one).On the other hand, if the path (i ! ai) is a non-exedane, then onsider theunique path (j ! aj) whih enters d traveling north. Clearly this path must bea non-exedane, as it is only the paths of non-exedanes whih ontain stepsnorth. Moreover, (i; j) must form a rossing of type CNN, sine the two paths mustinterset in a unique edge.Therefore � is a bijetion between the set of CEE- and CNN-rossings in �, andthe set of blak verties in D. �This ompletes the proof of Theorem 7.4. Permutation patternsIn this setion we introdue neessary terminology and de�nitions that will beused in the next setion, where we onstrut a bijetion 	 : Sn �! Sn. Thisbijetion proves the equidistribution of ertain linear ombinations of the statis-tis in De�nition 6 (alignments and rossings) with ertain linear ombinations ofgeneralized permutation patterns, whih we de�ne below. The omposition of 	and the bijetion � from Setion 2 then proves the equidistribution of our tableauxstatistis (numbers of 0's, 1's and 2's) with the pattern statistis to be de�ned here.A lassial permutation pattern p = p1p2 : : : pk is simply a permutation, and anourrene of p in a permutation � = a1a2 : : : an is a subsequene ai1 ; ai2 ; : : : ; aikof � (where i1 < i2 < � � � < ik) whose letters are in the same relative order as in p.For example, the permutation 416235 has two ourrenes of the pattern (2 3 1),namely the subsequenes 462 and 463.In the literature, the pattern (2 3 1) is usually denoted simply by 231. Wewrite it here with dashes between onseutive letters in order to emphasize thatthere are no restritions on the distane between the letters in a permutation thatform an ourrene of the pattern. A generalized pattern is a pattern where somepairs of adjaent letters may lak a dash between them. Suh an absene indiates



10 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSthat the orresponding letters must be adjaent in an ourrene of the patternin a permutation. For example, the pattern (2 31) ours only one in 416235,namely as 462. In the subsequene 463, whose letters are in the same relative orderas those of (2 31), the last two letters are not adjaent in 416235 as required foran ourrene of (2 31).The reason for writing patterns in parentheses is that we will onsider them asfuntions from the set of permutations to the natural numbers, where the value ofa pattern p on a permutation � is the number of di�erent ourrenes of p in �.For example, if � = 416235, as above, then (2 3 1)� = 2 and (2 31)� = 1.It is easy to see that there are exatly twelve di�erent patterns of length 3 withone dash. Six of these will be onsidered here, namely (1 32), (2 31), (3 21),(21 3), (31 2) and (32 1). These are all the patterns of length 3 with one dashwhose two letters not separated by a dash are in dereasing order.A desent in a permutation � = a1a2 : : : an is an i suh that ai > ai+1. Wesay that ai is a desent top and ai+1 a desent bottom. The set of desent tops isdenoted destopset, and the set of desent bottoms desbotset. Moreover, we letdestopsum be the sum of the elements of destopset, and likewise for desbotsum.We now de�ne the linear ombinations of patterns whose joint distribution onpermutations mathes the distribution of 0's, 1's and 2's on permutation tableaux.De�nition 10. Given a permutation �, leta(�) = (21 3)� + (3 21)� + (31 2)� ��des�2 �;b(�) = (2 31)� + n� 1� des�;(�) = (1 32)� + (32 1)� ��des�2 �:It is important to note that sine we will be onsidering the quadruple statistionsisting of a, b,  and the number of desents, the terms �des�2 � and n� 1� des�in the above de�nition only e�et a shift, by a onstant, of the statistis involved,but not an essential modi�ation.It is also important to note that the sum (1 32)� + (32 1)� in  is equalto desbotsum� � des�. Namely, for eah desent : : : yx : : : in �, the pattern(1 32) ounts the letters to the left of the desent that are smaller than its desentbottom (x). The letters to the right of the desent, and smaller than x, are ountedby (32 1), so learly we are ounting all letters in � that are smaller than x.Analogously, the sum (21 3)� + (3 21)� in a equals the sum of n � t over alldesent tops t in �.This leaves (31 2) in a, whih sums the left embraing numbers in �, so alledbeause (31 2) ounts, for eah letter x in �, the desents to the left of x that em-brae x, that is, where the letters of the desent are larger and smaller, respetively,than x. Analogously, the pattern (2 31) in b sums the right embraing numbersin �.To be more preise, we de�ne the right embraing number of eah letter ` in �,denoted rembr(`), as the number of desents : : : yx : : : to the right of ` in � suhthat x < ` < y.



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 11Lemma 11. Let des be the number of desents in a permutation �, and let a(�),b(�) and (�) be as above. Thena(�) + b(�) + (�) = (des+1)(n� des�1):Proof. Eah of the patterns involved in a + b +  ounts ertain letters to the leftor to the right of eah desent in �. Together they ount, for eah desent in �, allthe letters in � not belonging to the desent itself. There are, of ourse, n� 2 suhletters for eah desent. Thus, the sum of all the patterns in a(�) + b(�) + (�) isdes �(n� 2). Completing the proof now only requires a routine alulation. �5. Another bijetionWe now desribe the onstrution of a bijetion 	 : Sn �! Sn that takes apermutation � to a permutation � suh that the set of desent tops in � determinesthe set of weak exedane tops in � and the set of desent bottoms in � determinesthe set of weak exedane bottoms in � . Moreover, the right embraing numberof i in � beomes CEE(i) in � if i is a wexbottom in � and beomes CNN(i) in �otherwise.Reall the biword notation for permutations. For example, we write the permu-tation 31524 as �3 1 5 2 41 2 3 4 5� :In order to onstrut 	(�) (where � 2 Sn), we �rst onstrut two biwords, �f 0f �and �g0g�, and then form the biword � 0 = �f 0 g0f g � by onatenating f and g, andf 0 and g0, respetively. The words f; f 0; g; g0 are de�ned as follows (we will provelater, in Theorem 12, that this is possible):� The letters of f onsist of the set obtained by adding 1 to eah of thedesent bottoms in � and then adjoining the letter 1. The letters of f areordered inreasingly.� The letters of g onsist of the set obtained from the non-desent bottomsin � by removing the letter n and adding 1 to the remaining letters. Theletters of g are ordered inreasingly.� The letters of f 0 onsist of the set obtained by subtrating 1 from eah ofthe desent tops of � and then adjoining the letter n. The letters of f 0 areordered so that, for a in f 0, CEE(a) in � is the right embraing number ofa in �. (Observe that CEE(a) only depends on the relative order of thewextops in � , together with their orresponding wexbottoms.)� The letters of g0 onsist of the set obtained by removing 1 from the setof non-desent tops in � and then subtrating 1 from the remaining let-ters. The letters of g0 are ordered so that, for a in g0, CNN(a) is the rightembraing number of a in �.Rearranging the olumns of � 0, so that the bottom row is in inreasing order, weobtain the permutation � = 	(�) as the top row of the rearranged biword. Beforewe prove that this an always be done in the way desribed, we give an example.Let � = 215896374. Then � has



12 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSDesent bottoms: 1 3 4 6 Non-desent bottoms: 2 5 7 8 9Desent tops: 2 6 7 9 Non-Desent tops: 1 3 4 5 8The right embraing numbers are 2 for 5, 1 for 6 and 8, and 0 for all others:21-5-8-963-742 1 1We onstrut a permutation with the orresponding wexbottoms and wextops,and the orresponding nonzero values for CEE and CNN, that is, with CEE(5) = 2and CNN(6) = CNN(8) = 1. First, the wexbottoms are obtained by adding 1 to eahdesent bottom, and adjoining 1, whih is always a wexbottom. The wextops areobtained by subtrating 1 from the desent tops, and adjoining n, whih is alwaysa wextop. Thus, we getWexbottoms: (1) 2 4 5 7 Non-wexbots: 3 6 8 9Wextops: 1 5 6 8 (9) Non-wextops: 2 3 4 7We onstrut the permutation in two parts, one for the weak exedanes, the otherfor the non-weak exedanes.Now, the de�nitions of CEE and CNN are suh that CEE only applies to pairs ofweak exedanes, and CNN only to pairs of non-weak exedanes. We �rst onstrutthe weak exedane part of the permutation, by deiding where to plae eah ofthe wextops, in the plaes given by the wexbots:_ _ _ _ _1 2 4 5 7We start from the right, in plae 7, whih has a 0 assoiated to it (sine rembr(7) =0 in �). We need to put there the smallest number among the wextops that is atleast as large as 7 (otherwise, CEE(7) would exeed 0 in the resulting permutation).This is the number 8: 8_ _ _ _ _1 2 4 5 7This leaves the wextops 1, 5, 6, 9. The next plae, 5, has a 2 assoiated to it(sine rembr(5) = 2 in �), so we have to put there a wextop that it is bigger thanexatly two of the remaining wextops that are at least as big as 5. This fores usto make this 9 (and the two remaining wextops between 5 and 9 in size are 5 and6).We ontinue in this way until we have plaed all the wextops, in suh a way thatthe values of CEE for the remaining plaes are 0, sine 5 is the only letter amongthe wexbottoms here with a nonzero right embraing number in �:1 6 5 9 8_ _ _ _ _1 2 4 5 7The non-wex part is done in a similar way, but starting from the left, and weget: 2 3 4 7



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 13_ _ _ _3 6 8 9Observe that CNN(6) = CNN(8) = 1 and CNN(3) = CNN(9) = 0, as required.Conatenating these two biwords, and sorting the olumns to get the bottom rowin inreasing order, the permutation we obtain is 	(215896374) = 162593847.We now prove that the above proedure an always be arried out in the waydesribed.Theorem 12. Let db0(�) be the set obtained from desbotset(�) by adding 1 toeah of its elements, and adjoining the letter 1.Let dt0(�) be the set obtained from destopset(�) by subtrating 1 from eah ofits elements, and adjoining the letter n.For a permutation � let wb(�) be the set of weak exedane bottoms of � and letwt(�) be the set of weak exedane tops of � .The map 	 desribed above is well de�ned, and has the following properties,where � = 	(�):(i) wb(�) = db0(�),(ii) wt(�) = dt0(�),(iii) CEE(�) + CNN(�) = rembr(�).Moreover, 	 is a bijetion.Proof. Reall that CEE(i) = 0 unless i is an exedane bottom, and that CNN(i) = 0unless i is a non-exedane bottom.Let the letters of wb(�) be b1; b2; : : : ; b`, ordered so that b` < � � � < b2 < b1.Look at the largest letter in wb(�), that is, b1. Suppose the embraing number ofb1 in � is e1. Then there are at least e1 desent tops in � that are larger than b1.Thus, by the onstrution of wt(�) from the desent top set of �, there are at leaste1+1 elements x in wt(�) suh that b1 � x. So, we an �nd an element t1 in wt(�)suh that wt(�) ontains preisely e1 elements x satisfying b1 � x � t1. Setting�(b1) = t1 guarantees that CEE(b1) = e1 in � .Look next at b2, the seond largest element in wb(�). Suppose its embraingnumber in � is e2. There are then at least e2 + 1 elements x in wt(�) suh thatb2 � x. However, one of these elements is t1, whih has already been plaed tothe right of plae b2 in � , and so t1 annot ontribute to CEE(b) in � . But, b1 + 1is a desent bottom in � and so its orresponding desent top, d, must be largerthan b1 +1 and hene larger than b2. Thus, b2 annot be embraed by the desent: : : d(b1 + 1) : : : in �. Hene, the embraing number of b2 in � an be at most oneless than the number of elements x in wt(�) satisfying b2 � x. We an therefore�nd an element t2 6= t1 in wt(�) suh that preisely e2 of the elements x in wt(�)apart from t1 satisfy b2 � x � t2.An analogous argument shows that the embraing number of bi in � an be atmost N + 1 � i, where N is the number of elements x in wt(�) with bi � x. Wean thus plae eah of the elements ti of wt(�) in � so that CEE(bi) in � equalsrembr(bi) in �.In partiular, eah plaement aording to the above algorithm will result in thereation of a weak exedane. Namely, learly the k-th largest wexbottom is smallerthan or equal to the k-th largest wextop. Thus, by indution, sine we onsider



14 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSthe wexbots in dereasing order, the largest wextop unused at eah stage of thealgorithm is greater than or equal to the wexbottom being onsidered.To onstrut the subword of � onsisting of non-wextops, we proeed in a similarway, exept that we start from the smallest non-wexbottom. At eah stage, for thenon-wexbottom bi we �nd a non-wextop d that satis�es d < x < bi for preiselye elements x among the remaining non-wextops, where e = rembr(bi) in �. Theargument showing that this is always possible, and that eah plaement results in anon-weak exedane, is analogous to the ase of the weak exedane subword, andis omitted.To prove that 	 is a bijetion, it su�es to show that it is injetive, sine it isa map from Sn to itself. Let �1 and �2 be two permutations with 	(�1) = 	(�2).From the de�nition of 	 it is lear that �1 and �2 must have the same desent topsand desent bottoms and also the same right embraing numbers for eah letter. Itfollows from the proof of Theorem 4 in [2, p. 249℄ that a permutation is uniquelydetermined by its sets of desent bottoms and tops, respetively, together with theright embraing numbers of its letters. Thus, we must have �1 = �2.In fat, the proof of Theorem 4 in [2℄ an be applied diretly to our situationwith trivial modi�ations, and yields a desription of the inverse of 	. �Reall that wexbotsum(�) is the sum of all the wexbottoms in �. The followingorollary of Theorem 12 requires only straightforward alulations.Corollary 13.wextopsum	(�) = destopsum� + n� des�;wexbotsum	(�) = desbotsum� + des� + 1:We will use the following two lemmas, the �rst one proved by Corteel [5℄, in ourproofs of the equidistribution results between our tableaux statistis and permuta-tion statistis.Lemma 14 (Corteel [5℄). Let wex, AEE, ANN, AEN, ANE, CEE, CNN be as above.Then AEE +ANN +AEN +ANE +CEE +CNN = (wex�1)(n�wex):Lemma 15. AEN = �n2���n�wex2 �+wex�wextopsum;(1) ANE = wexbotsum��wex2 �:(2)Proof. Equation (1) is equivalent toAEN +wextopsum�wex = �n2���n�wex2 �:We will show that the sum in the left-hand-side above ounts all pairs (i; j), with1 � i < j � n, exept those for whih neither of i and j is a weak exedane.Reall that AEN ounts the pairs (i; j) suh that j � aj < ai < i. Eah suh pairan be desribed as onsisting of a wextop w in the permutation, and a non-wextopthat is larger than w and to the right of w.We an interpret (wextopsum�wex) as the sum, over all wextops, of the sizeof the wextop, minus 1. Counting this for eah wextop w an be done by ounting



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 15all the letters in the permutation that are stritly smaller than w. Doing this for allwextops is equivalent to ounting all pairs of letters in the permutation that eitheronsist of two wextops, or a wextop and a non-wextop, where the wextop is thelarger of the two.Therefore AEN and (wextopsum�wex) together ount all pairs of letters inthe permutation, exept those onsisting of two non-wextops. (Observe that it isimpossible to have a non-wextop z and a wextop w suh that z is left of w andz > w.) The total number of pairs of letters in a permutation in Sn is of ourse�n2�, and the number of pairs of non-wexbots is �n�wex2 �, whih ompletes the proof.Equation 2 an be proved in a similar manner. �We an now prove the main results about the equidistribution implied by thebijetion 	.Theorem 16. Let � = 	(�). We have des� = wex� � 1;(3) (31 2)� = AEE� +ANN�;(4) (21 3)� + (3 21)� ��des�2 � = AEN�;(5) (2 31)� = CEE� +CNN�;(6) (1 32)� + (32 1)� ��des�2 � = ANE�:(7)Proof. Equations (3) and (6) follow diretly from Theorem 12, sine (2 31)� is thesum of the right embraing numbers for all the letters in �. We will prove (5) here;the proof of (7) is analogous and is omitted. Having done this, Equation (4) followsfrom the other four identites in the present theorem, together with Lemmas 14and 11 and routine alulations.To prove Equation (5), observe that(21 3)� + (3 21)� = n � des� � destopsum�:This is beause (21 3)� + (3 21)� ounts the letters in � larger than the desenttop b for eah desent : : : ba : : : in �. Aording to Corollary 13, the right-hand-sidein the equation above an be rewritten as follows:n � des� � destopsum = n � des� �wextopsum � + n� des�:By Lemma 15, this is equal ton � des� +�AEN� �wex� ��n2�+�n�wex�2 ��+ n� des�;whih, in turn, is equal toAEN� + n � des� � (des� + 1)��n2�+�n� (des� + 1)2 �+ n� des�:To show that this last expression is equal to AEN� + �des�2 � is straightforward. �Note that Equations (4) and (5) together imply that(31 2)� + (21 3)� + (3 21)� ��des2 � = AEE� +ANN� +AEN�:This, together with Theorem 7, leads to the following orollary.



16 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSCorollary 17. Let T (d; a; b; ) be the set of permutation tableaux with d + 1 rowsand (n � d � 1) olumns, whih are �lled with preisely a 0's, b 1's and  2's. LetP (d; a; b; ) be the set of all permutations � 2 Sn, suh that� d = des(�),� a = [(31 2) + (21 3) + (3 21)℄� � �des�2 �,� b = (2 31)� + n� 1� des�,�  = [(1 32) + (32 1)℄� � �des�2 �.Then jT (d; a; b; )j = jP (d; a; b; )j.6. Enumeration resultsOne nie appliation of permutation tableaux is that they failitate enumera-tion of permutations aording to various statistis. This is beause permutationtableaux satisfy a rather simple reurrene, whih we now explain.Fix a partition � = (�1; : : : ; �k). Let F�(p; q) be the polynomial in p and q suhthat the oe�ient of psqt is the number of valid �llings of the Young diagram Y�whih ontain s 0's and t 1's. As Figure 7 illustrates, there is a simple reurrenefor F�(p; q).Expliitly, any valid �lling of � is obtained in one of the following ways:� inserting a olumn whose bottom entry is 1 and whose other entries are 0after the (�k � 1)st olumn of a valid �lling of (�1 � 1; �2 � 1; : : : ; �k � 1);� adding a 1 to the end of the bottom row of a valid �lling of the shape(�1; �2; : : : ; �k�1; �k � 1);� adding an all-zero row of length �k�1 to a valid �lling of (�1; : : : ; �k�1).Thus, we have the following reurrene.Proposition 18.F�(p; q) = pk�1qF(�1�1;�2�1;:::;�k�1)(p; q) + qF(�1;�2;:::;�k�1;�k�1)(p; q)+ p�kF(�1;:::;�k�1)(p; q):
or

00 0

*
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*

* * 1* *

*
*
*or

1
0
0
0 Figure 7. Reurrene for F�(p; q)It is straightforward to ompute F�(p; q) when k (the number of rows of �) issmall. Here are the �rst two formulas.Proposition 19. F(�1)(p; q) = q�1 :F(�1 ;�2)(p; q) = �q�1�1p�2+1 + q�1�1[2℄�2+1p;q :In the above expression, [2℄p;q is the p; q-analog of 2. Reall that the p; q-analogof the number n is pn�1 + pn�2q + pn�3q2 + � � �+ qn�1, denoted [n℄p;q.Let Dk;n(p; q; r) := P� F�(p; q)rk(n�k)�j�j, where � ranges over all partitionsontained in a k � (n � k) retangle. By Theorem 7, Dk;n(p; q; r) enumerates



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 17permutations aording to the number of weak exedanes, several kinds of align-ments, and rossings. And by Corollary 17, Dk;n(p; q; r) enumerates permutationsaording to the number of desents and ourrenes of various generalized pat-terns. Therefore it would be nie to get an expliit expression for Dk;n(p; q; r), forexample by solving expliitly for F�(p; q) and then by summing over partitions �ontained in a k � (n� k) retangle.For �xed small k, it is not too di�ult to ompute the generating funtionDk(p; q; r; x) := PnDk;n(p; q; r)xn. Here are the �rst few formulas. Note thatit is easy to determine what the denominator should be for Dk(p; q; r; x), but thenumerator is signi�antly more ompliated.Proposition 20.D1(p; q; r; x) = x1� qxD2(p; q; r; x) = x2(1� pqx)(1� qrx)(1� q[2℄p;qx)D3(p; q; r; x) = x3(1 + pq2x� p3q2rx2 � 2p2q3rx2 � pq4rx2)(1� p2qx)(1� pqrx)(1 � qr2x)(1� pq[2℄p;qx)(1� qr[2℄p;qx)(1� q[3℄p;qx)One an derive these formulas by either using the methodology outlined above(i.e. by summing F�(p; q)), or else by translating the problem of enumerating per-mutation tableaux into a problem about enumerating ertain weighted lattie paths,and then by enumerating these lattie paths. In order to sketh the latter method,let us de�ne a bad zero in a permutation tableau to be a 0 whih lies diretly under-neath some 1. Note that if some olumn C in a permutation tableau T kn ontainsa bad zero in the rth row, then every olumn to the left of C must also ontain azero in the rth row.In the lattie path method for enumeration of permutation tableaux, we assoiateto eah permutation tableau T kn a weighted lattie path L = fLigni=1 onsisting ofn steps in the plane, whih must be of the following types: (1; 1) (a northeast step),(1; 0) (an east step), and (1;�j), where 1 � j � k�1 (a southeast step). Eah stepLi in the lattie path represents the step Pi in the partition path fPigni=1. (Reallthat the partition path follows the shape of the partition Y� and travels from thenortheast orner to the southwest orner of the k � (n � k) retangle ontainingT kn .) The steps (1; 1) in L orrespond to vertial steps in the partition path, andhave weight x. A step (1; 0) in L orresponds to a horizontal step in the partitionpath suh that the orresponding olumn C of T kn does not introdue any bad zeros(exept those that were fored by bad zeros to the right of C). Suh a step hasweight paqbrx, where a, b, and  are the numbers of 0's, 1's, and 2's, respetively,in olumn C. (Note that a+ b+  = k.) Finally, a step (1;�j) in L orresponds toa horizontal step in the partition path suh that the orresponding olumn C of T knintrodues exatly j new bad zeros (that were not fored by bad zeros in olumns tothe right of C). As before, suh a step has weight paqbrx, where a, b, and  are thenumbers of 0's, 1's, and 2's, respetively, in olumn C. Observe that the height ofany point in the lattie path L is equal to the number of boxes of the orrespondingolumn of T kn whih an be �lled with either a 0 or a 1. By assoiating weighted



18 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSlattie paths to permutation tableaux in this way, we an failitate omputation ofthe generating funtions Dk(p; q; r; x) for small k.Now we will give omplete results about a ertain speialization of Dk;n(p; q; r).Let Ek;n(q) := Dk;n(1; q; 1). An expliit formula for Ek;n(q) was found in [9℄; theproof utilized a reurrene similar to that in Proposition 18.Theorem 21 (Williams [9℄).Ek;n(q) = qn�k2 k�1Xi=0(�1)i[k � i℄nqki�k ��ni�qk�i +� ni� 1�� :The polynomials above have many nie properties. It was observed in [9℄ thatif one renormalizes Ek;n(q) by de�ning Êk;n(q) := qk�nEk;n(q), then Êk;n(q) isa new q-analog of the Eulerian numbers (distint from Carlitz' lassial q-analogof the Eulerian numbers [4℄). Furthermore, Êk;n(q) speializes at q = �1; 0; 1to the binomial oe�ients, the Narayana numbers, and the Eulerian numbers.Additionally, Êk;n(q) = Ên+1�k;n(q). It was shown more reently by Corteel [5℄that the polynomials Êk;n(q) naturally relate to the ASEP model in statistialphysis.Table 1 lists Êk;n(q) for n = 4; 5; 6; 7.Theorem 21 together with Corollary 17 implies the following result.Corollary 22. The number of permutations in Sn with k � 1 desents and mourrenes of the pattern (2� 31) is equal to the oe�ient of qm inÊk;n(q) = q�k2 k�1Xi=0(�1)i[k � i℄nqki ��ni�qk�i +� ni� 1�� :This result was �rst onjetured by the authors of this paper, and �rst provedby Corteel [5℄. The formula Êk;n(q) is the �rst known polynomial expression whihgives the omplete distribution of a permutation pattern of length greater than 2(the two ases of length 2 orrespond to the Eulerian numbers and the oe�ientsof [n℄!, respetively).For the polynomials Êk;n(q), both ordinary and ontinued fration generatingfuntions are known. It an be shown [9℄ that E(q; x; y) :=Pn;k qn�kÊk;n(q)ykxnis equal to 1Xi=0 yi(q2i+1 � y)qi2+i+1(qi � qi+1[i℄x+ [i℄xy) :Additionally, Corteel [5℄ used results of Clark, Steingrímsson, and Zeng [2℄ toshow the following:Theorem 23 (Corteel [5℄).Ê(q; x; y) = 11� b0x� �1x21� b1x� �2x21� b2x� �3x2. . . ;



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 19Ê1;4(q) 1Ê2;4(q) 6 + 4q + q2Ê3;4(q) 6 + 4q + q2Ê4;4(q) 1Ê1;5(q) 1Ê2;5(q) 10 + 10q + 5q2 + q3Ê3;5(q) 20 + 25q + 15q2 + 5q3 + q4Ê4;5(q) 10 + 10q + 5q2 + q3Ê5;5(q) 1Ê1;6(q) 1Ê2;6(q) 15 + 20q + 15q2 + 6q3 + q4Ê3;6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6Ê4;6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6Ê5;6(q) 15 + 20q + 15q2 + 6q3 + q4Ê6;6(q) 1Ê1;7(q) 1Ê2;7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5Ê3;7(q) 105 + 245q + 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8Ê4;7(q) 175+441q+588q2+532q3+364q4+196q5+84q6+28q7+7q8+q9Ê5;7(q) 105 + 245q + 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8Ê6;7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5Ê7;7(q) 1 Table 1. Êk;n(q)where bn = y[n+ 1℄q + [n℄q, �n = y[n℄2q, and [n℄q = 1 + q + � � �+ qn�1.Finally, we remark that, up to a shift by a onstant, the bistatisti ounting thenumber of rows and number of 0's in permutation tableaux has the Euler-Mahoniandistribution, that is, it has the same distribution as the number of desents andthe major index for permutations (the major index is the sum of the plaes of thedesents in a permutation). Note �rst that the statisti a in Corollary 17, whenstripped of �des2 � (whih is a onstant when onsidering a �xed number of desents),has the same distribution as the statisti(8) (1 32) + (32 1) + (2 31):This is beause the statisti in (8) is obtained by taking the reverse omplement ofthe statisti (31 2)+(21 3)+(3 21), that is, by reversing eah of the patterns andthen replaing eah letter i by 4� i. Doing the same with eah permutation in Sn(with 4 replaed by n+1) is a bijetion from Sn to itself, and this bijetion learlyproves the equidistribution of (31 2) + (21 3) + (3 21) with (1 32) + (32 1) +(2 31), even when eah statisti is taken jointly with the number of desents (whihis invariant under reverse omplement). The statisti (1 32)+ (32 1) + (2 31) is



20 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSequal to the statisti mak, as pointed out in [1℄, and it was shown by Foata andZeilberger [6℄ that (des;mak) has the Euler-Mahonian distribution.1Beause the bistatisti ounting number of rows and number of 0's has the Euler-Mahonian distribution, the speializationDk;n(p; 1; 1) is essentially Carlitz' lassialq-analog of the Eulerian numbers [4℄. Therefore the polynomials Dk;n(p; q; r) gen-eralize both the lassial q-analog of the Eulerian numbers and the new q-analog ofthe Eulerian numbers found in [9℄.7. Open problemsThe bijetions taking permutation tableaux to permutations seem to have severalproperties that merit further investigation. We list a few of these, along with someother open problems.(1) Find an expliit expression for Dk;n(p; q; r).(2) We say that a 1 in a permutation tableau is essential if it is the topmost onein its olumn or the leftmost 1 in its row. A tableau is determined by itsessential 1's: all the other 1's are determined by these, beause of ondition(2) in the de�nition of a permutation tableau. What do the essential 1'sorrespond to in the orresponding permutation?We onjeture that the distribution of permutation tableau aording tothe number of essential 1's is equal to that for number of yles in per-mutations. This distribution is the same as that for Left-to-Right minima.Moreover, we onjeture that the joint distribution of tableaux aording tothe number of rows and the number of essential 1's equals that of permuta-tions aording to desents and Left-to-Right-minima. That bistatisti, inturn, has the same distribution as the number of weak exedanes and thenumber of yles of a permutation, when written in standard yle form.(3) The number of 0's in a tableau orresponds to the total number of our-renes of the patterns (3 21), (21 3) and (31 2). It is easy to see thatthese patterns have the same distributions as (1 32), (32 1) and (2 31),respetively. To prove this, simply reverse eah permutation in Sn. Can wepartition the 0's in a tableau into two sets, one orresponding to ourrenesof (3 21) + (21 3) and the other to ourrenes of (31 2)? Observe thatthe �rst one of these sets would orrespond to desent tops and the seondone to left embraings. Thus, these sets would be symmetri ounterpartsof 2's and 1's respetively, although this symmetry is not transparent inthe tableaux.(4) The re�etion of a permutation tableau T kn in its north-east/south-westdiagonal yields a permutation tableau if and only if T kn has a 1 in eah row.That is equivalent to the assoiated permutation being �xed point free.Whih permutation is assoiated to the re�eted tableau (that tableau isalso �xed point free beause it has a 1 in eah row)?(5) A permutation tableau T must have at least one 1 in eah olumn. If ithas only this minimum number of 1's, then the orresponding permutation,that is, 	�1(�(T )), has no ourrenes of the pattern (2 31). It has been1Atually, the statisti (1 32) + (32 1) + (2 31) is a slight variation on mak, as de�ned byFoata and Zeilberger, but is easily seen to have the same distribution when taken together withthe number of desents. Foata and Zeilberger's mak is atually equal to the statisti alled maklin [1, Table 1℄
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