
PERMUTATION TABLEAUX AND PERMUTATION PATTERNSEINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSAbstra
t. In this paper we introdu
e and study a 
lass of tableaux whi
hwe 
all permutation tableaux; these tableaux are naturally in bije
tion withpermutations, and they are a distinguished subset of the �-diagrams of AlexPostnikov [7, 9℄. The stru
ture of these tableaux is in some ways more transpar-ent than the stru
ture of permutations; therefore we believe that permutationtableaux will be useful in furthering the understanding of permutations. Wegive two bije
tions from permutation tableaux to permutations. The �rst bije
-tion 
arries tableaux statisti
s to permutation statisti
s based on relative sizesof pairs of letters in a permutation and their pla
es. We 
all these statisti
sweak ex
edan
e statisti
s be
ause of their 
lose relation to weak ex
edan
es.The se
ond bije
tion 
arries tableaux statisti
s (via the weak ex
edan
e sta-tisti
s) to statisti
s based on generalized permutation patterns. We then giveenumerative appli
ations of these bije
tions. For example, we give generat-ing fun
tions enumerating permutation tableaux a

ording to their 
ontent,whi
h therefore enumerate permutations a

ording to the number of o

ur-ren
es of various generalized patterns. We 
on
lude our paper with a list ofopen problems. 1. Introdu
tionThe aim of this arti
le is to advertise a new 
lass of tableaux together with two
urious bije
tions for the study of permutations. We 
all these tableaux permutationtableaux; they are naturally in bije
tion with permutations, and are a distinguishedsubset of Alex Postnikov's �-diagrams [7℄, whi
h were enumerated by the se
ondauthor [9℄ be
ause of their 
onne
tion with the totally nonnegative part of theGrassmannian.Re
all that a partition � = (�1; : : : ; �k) is a weakly de
reasing sequen
e of non-negative integers. For a partition �, where P�i = m, the Young diagram Y� ofshape � is a left-justi�ed diagram of m boxes, with �i boxes in the i-th row.We de�ne a permutation tableau T kn to be a partition � su
h that Y� is 
ontainedin a k� (n� k) re
tangle, together with a �lling of the boxes of Y� with 0's and 1'ssu
h that the following properties hold:(1) Ea
h 
olumn of the re
tangle 
ontains at least one 1.(2) There is no 0 whi
h has a 1 above it in the same 
olumn and a 1 to its leftin the same row.We 
all su
h a �lling a valid �lling of Y�. Observe that the requirement in (1)implies that the Young diagram must have n� k 
olumns, whereas the number ofrows may be smaller than k.Date: July 9, 2005.Key words and phrases. Le-tableau, permutation patterns, permutation tableaux, q-analogs.The �rst author was partially supported by the European Commission's IHRP Programme,grant HPRN-CT-2001-00272, �Algebrai
 Combinatori
s in Europe�.



2 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSIf we forget the requirement (1) above we re
over the de�nition of a �-diagram [7℄.Figure 1 gives an example of a permutation tableau.
k = 7; n = 17� = (10; 9; 9; 8; 5; 2)k n� k

1 10 0 0 1 10 0 0 0 0 0 1 10 0 0 0 0 0 0 0 01 1 1 1 0 1 1 1 10 1 1 0 0 1 0 1 0 1
Figure 1. A permutation tableauWe will also think of a permutation tableau T kn as a k � (n � k) array of 0's,1's, and 2's, by simply taking the previous des
ription of a permutation tableauxand putting a 2 in every box of the re
tangle whi
h is not in Y�, as in Figure 2.We position the partition shape so that its top row lies at the top of the re
tangle;therefore the 2's 
ut out a (rotated) Young diagram in the southeast 
orner of there
tangle.

k = 7; n = 17� = (10; 9; 9; 8; 5; 2)k n� k
2 2 2 2 2 2 2 2 2 21 1 2 2 2 2 2 2 2 20 0 0 1 1 2 2 2 2 20 0 0 0 0 0 1 1 2 20 0 0 0 0 0 0 0 0 21 1 1 1 0 1 1 1 1 20 1 1 0 0 1 0 1 0 1

Figure 2. Another representation of a permutation tableauPostnikov [8℄ has des
ribed a map that takes permutation tableaux 
ontained ina k�(n�k) re
tangle to permutations in Sn with k weak ex
edan
es. In this paperwe give a simpler des
ription of this map, prove that it is a bije
tion, and show thatthis map in fa
t preserves many more statisti
s. Namely, the numbers of 0's, 1'sand 2's, respe
tively, in a permutation tableau equal 
ertain linear 
ombinations of
ertain statisti
s de�ned on the 
orresponding permutation. Ea
h of these statisti
s
ounts pairs of indi
es (i; j) in a permutation, a

ording to the relative sizes of theletters in those pla
es and the pla
e numbers themselves. These statisti
s werede�ned by Corteel in [5℄.We then de�ne another bije
tion, taking permutations to permutations andtranslating the statisti
s mentioned above into 
ertain linear 
ombinations of gen-eralized permutation patterns. These 
ombinations between them 
ontain pre
iselyhalf the generalized patterns of length 3 with one dash (see Se
tion 4).



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 3We 
on
lude our paper by giving various enumerative appli
ations of our bije
-tions. The stru
ture of permutation tableaux is in many ways more transparentthan the stru
ture of permutations, and hen
e lends itself more easily to enumer-ation. For example, by using our bije
tions together with results of the se
ondauthor [9℄, we are able to give the entire distribution of permutations a

ordingto the number of o

urren
es of the generalized pattern (2 31). This is the �rstsu
h result for any pattern of length 3 (or more). However, this parti
ular result,although �rst 
onje
tured by the present authors, was �rst proved by Corteel [5℄,whose work provided us with a 
ru
ial pie
e of the puzzle solved here.Another interesting 
onsequen
e of the results presented here is that the statisti

ounting permutation tableaux a

ording to the number of rows and number of 0'sis an Euler-Mahonian statisti
, that is, has the same distribution as the bistatisti
on permutations 
onsisting of the number of des
ents and the major index. It fol-lows that if we de�ne Dk;n(p; q; r) to be the polynomial enumerating permutationtableaux T kn a

ording to the number of 0's, 1's, and 2's, then Dk;n(p; q; r) spe
ial-izes to Carlitz' 
lassi
al q-analog of the Eulerian numbers [4℄, as well as to the morere
ent q-analog of the Eulerian numbers that was studied in [9℄.2. Bije
tion from Permutation Tableaux to PermutationsIn this se
tion we des
ribe a bije
tion � from permutation tableaux to permuta-tions. More pre
isely, � is a bije
tion from permutation tableaux T kn to permuta-tions in the symmetri
 group Sn with k weak ex
edan
es. Here, a weak ex
edan
eof a permutation � is a value �(i) su
h that �(i) � i. In this situation we say that iis a weak ex
edan
e bottom of � and that �(i) is a weak ex
edan
e top of �. To makethe notation less 
umbersome, we abbreviate these as wexbottoms and wextops, re-spe
tively. Non-weak ex
edan
e bottoms and non-weak ex
edan
e tops are de�nedin the obvious way, in terms of i and �(i) su
h that �(i) < i, and are abbreviatednon-wexbots and non-wextops, respe
tively. The number of weak ex
edan
es in �will be denoted wex�. Also, we let wexbotsum be the sum of all the wexbottomsin �.We remark that Postnikov [8℄ de�ned a map that is equal to � but his des
rip-tion was mu
h more 
ompli
ated and went through the intermediate step of webdiagrams.Before giving the bije
tion �, we must de�ne the diagram D(T kn ) asso
iated withT kn as follows. Regard the south-east border of the partition Y� 
ontained in thek� (n� k) re
tangle as giving a path (the partition path) P = fPigni=1 of length nfrom the northeast 
orner of the re
tangle to the southwest 
orner of the re
tangle:label ea
h of the (unit) steps in this path with a number from 1 to n a

ording tothe order in whi
h the step was taken. Then, remove the 0's from T kn and repla
eea
h 1 in T kn with a vertex. We will 
all the top vertex in ea
h 
olumn a whitevertex and all other verti
es bla
k verti
es. Finally, from ea
h vertex v, draw anedge to the east and an edge to the south; ea
h su
h edge should 
onne
t v to eithera 
losest vertex in the same row or 
olumn, or to one of the labels from 1 to n. Theresulting pi
ture is the diagram D(T kn ). See Figure 3.We now de�ne the permutation � = �(T kn ) via the following pro
edure. Forea
h i 2 f1; : : : ; ng, �nd the 
orresponding position on D(T kn ) whi
h is labeled by i.If the label i is on a verti
al step of P , start from this position and travel straightwest as far as possible on edges of D(T kn ). Then, take a �zig-zag� path southeast,



4 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMS
5 3218 7 6 4Figure 3. The diagram of a tableau. The topmost 1 in ea
h
olumn be
omes a white vertex, and the other 1's be
ome bla
kverti
es.
5 3218 7 6 4Figure 4. The paths taken by 1 and 6: �(1) = 7, �(6) = 2.by traveling on edges of D(T kn ) south and east and turning at ea
h opportunity(i.e. at ea
h new vertex). This path will terminate at some label j � i, and we let�(i) = j. If i is not 
onne
ted to any edge (equivalently, if there are no verti
esin the row of i) then we set �(i) = i. Similarly, if the label i is on a horizontalstep of P , start from this position and travel north as far as possible on edges ofD(T kn ). Then, as before, take a zig-zag path south-east, by traveling on edges ofD(T kn ) east and south, and turning at ea
h opportunity. This path will terminateat some label j < i, and we let �(i) = j.See Figure 4 for a pi
ture of the path taken by i.The following three lemmas are 
lear from the 
onstru
tion above.Lemma 1. In �(T kn ), the letter i is a �xed point if and only if there is an entirerow in T kn that has no 1's and whose right hand edge is labeled by i. In parti
ular,n; n� 1; : : : ; n�m+1 are �xed points in � if and only if the bottom m rows of T kn(in the k � (n� k) re
tangle) 
onsist entirely of 2's.Lemma 2. Any dire
ted step in a path on D(T kn ) determines the path 
ompletely.It follows that �(T kn ) is a permutation.As an example, if T kn is the permutation tableau whose diagram is given inFigures 3 and 4, then �(T kn ) = 74836215.



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 5Lemma 3. The weak ex
edan
e bottoms of � = �(T kn ) are pre
isely the labels onthe verti
al edges of P . The non-weak ex
edan
e bottoms of � are pre
isely thelabels on the horizontal edges of P . In parti
ular, �(T kn ) is a permutation in Snwith pre
isely k weak ex
edan
es.Theorem 4. The map � is a bije
tion from permutation tableaux to permutations.Proof. To prove that � is a bije
tion, we will give an expli
it des
ription of itsinverse, again via an algorithmi
 pro
edure. First we need to de�ne a relative �xedpoint in any biword �a1 : : : anb1 : : : bn�, where the ai's are distin
t integers and the bi'salso. A relative �xed point is a pair (bp; ap) su
h that if ap is the j-th smallestletter among the ai then bp is also the j-th smallest letter among the bi.For example, in �5 3 1 46 2 1 3�, the pair (2; 3) is a relative �xed point, sin
e ea
h isthe se
ond smallest letter in its row.Note that we will use the biword notation �a1 : : : an1 : : : n � as an alternative repre-sentation of the permutation a1 : : : an.Let � be the permutation �a1 : : : an1 : : : n �. We now give the pro
edure for 
omputing��1(�).0. Compute the weak ex
edan
e bottoms of � to get the shape of the partitionin T kn (see Lemma 3). Let ~� = �.1. Che
k for relative �xed points in ~�. If (i; j) is a relative �xed point then �llwith 0's the as yet undetermined part of the row 
orresponding to the weakex
edan
e bottom i. Re
ompute ~� by removing the relative �xed points.2. Suppose we have determined the 
ontent of the k rightmost 
olumns. Thenlook at the next 
olumn to the left, whi
h is indexed by a non-ex
edan
ebottom r (that is, by the label on the horizontal step at the bottom of that
olumn (Lemma 3)). Knowing that r ! ar in � uniquely determines theposition p of the highest 1 in the 
olumn 
orresponding to r, sin
e thereis a unique zig-zag path going ba
kwards (north-west) from ar to a box inthe 
olumn above i. Insert a 1 at that position and 0's in all boxes aboveit whi
h are in the same 
olumn. Also, insert 1's into all undeterminedboxes below p. (Note that we know that all nonzero boxes below positionp must also be 1's be
ause otherwise, if there were some 0 below the 1 theneverything to its left would have to be a 0 also, implying that we had arelative �xed point in ~�.) Redu
e ~� by removing the 
olumn �arr � fromthe biword for ~�. Go to step 1.It is 
lear from this 
onstru
tion that our resulting tableau T kn will be a permu-tation tableau. And it is easy to 
he
k that the map des
ribed above is indeed theinverse of �. �Example 5. Let � = 514263. Sin
e � is in S6 and has three weak ex
edan
es anda6 6= 6, our permutation tableau T kn will be 
ontained in a 3 � 3 re
tangle (theresulting tableau is shown in Figure 5). As in step 0, we want to �rst 
omputethe shape of the asso
iated partition. Sin
e 1; 3; 5 are the wexbottoms, and 2; 4; 6are the non-wexbottoms, this uniquely determines a path (the partition path) from
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10 11 1 15 3 1
6 4 2

Figure 5. The permutation tableau for � = 514263the northeast 
orner of the re
tangle to the southwest 
orner of the re
tangle withverti
al steps in positions 1; 3; 5 and horizontal steps in positions 2; 4; 6. That is, ourpartition has the shape (3; 2; 1). We now draw this partition, labeling the edges of itssoutheast border a

ordingly with the numbers 1; : : : ; 6, and set ~� = (5; 1; 4; 2; 6; 3).Going to step 1, we see that ~� has no relative �xed points.Going to step 2, the fa
t that 2 ! 1 in � implies that the rightmost 
olumn(whi
h 
onsists of a single box) 
ontains a 1 in the top row. We now redu
e thepermutation ~� = �5 1 4 2 6 31 2 3 4 5 6� by removing (2; 1), obtaining ~� = �5 4 2 6 31 3 4 5 6�.Going ba
k to step 1, we see that there are no relative �xed points in ~�.Going to step 2, sin
e 4 ! 2 in ~� it is 
lear that the highest box in the 
olumnindexed by 4 must 
ontain a 1. All undetermined boxes below this 1 must 
ontain1's also. We now redu
e the permutation ~� = �5 4 2 6 31 3 4 5 6� by removing 4 ! 2,obtaining ~� = �5 4 6 31 3 5 6�.Going ba
k to step 1, we now see that ~� has the relative �xed point (3; 4).Therefore the undetermined part of the row 
orresponding to 3 
onsists of zeros.Now we redu
e the permutation ~� = �5 4 6 31 3 5 6�, obtaining ~� = �5 6 31 5 6�.Going to step 2, sin
e 6 ! 3 in ~� the top box in the 
olumn 
orresponding to6 has a 1. All undetermined boxes below that 
ontain 1's. We have now �lled inall 
olumns of the tableau � obtaining the permutation tableau in Figure 5 � so weare done. 3. How � translates statisti
sThe six permutation statisti
s in the following de�nition will be related to thestatisti
s re
ording the numbers of 0's, 1's and 2's in permutation tableaux. The�rst four of these re�ne Postnikov's de�nition of alignment [7℄ (see [9℄); all of thesestatisti
s were de�ned by Corteel [5℄;



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 7De�nition 6. Given a permutation � = a1a2 : : : an, letAEE(i) = fj j j < i � ai < ajg;ANN(i) = fj j aj < ai < i < jg;AEN(i) = fj j j � aj < ai < ig;ANE(i) = fj j ai < i < j � ajg;CEE(i) = fj j j < i � aj < aig;CNN(i) = fj j ai < aj < i < jg:We then set AEE(�) =Xi jAEE(i)j;and likewise for the other �ve statisti
s.Observe that if we draw the permutation as a 
hord diagram on a 
ir
le, as inFigure 6, then j 2 A��(i) means that the 
hords starting at i and j do not interse
tand roughly �point in the same dire
tion�; we will say that this is an alignment oftype A��. And if j 2 C��(i) then the 
hords starting at i and j 
ross ea
h other; wewill say that this is a 
rossing of type C��. Note that the subs
ripts in our notationrefer to whether the positions i and j are wexbottoms or non-wexbottoms of thepermutation. For example, in Figure 6, the 
hords beginning at 3 and 5 form analignment of type ANE, and the 
hords beginning at 2 and 4 form a 
rossing oftype CNN.
12345 6 7 8

Figure 6. A 
hord diagram for the permutation 65187243Theorem 7. Let T (d; a; b; 
) be the set of permutation tableaux with d rows, (n�d)
olumns, a 0's, b 1's and 
 2's. LetM(d; a; b; 
) be the set of all permutations � 2 Snwith � d = wex(�),� a = AEE(�) + ANN(�) + AEN(�),� b = CEE(�) + CNN(�),� 
 = ANE(�).Then jT (d; a; b; 
)j = jM(d; a; b; 
)j.To prove the above result, we will show that � is a bije
tion from T (d; a; b; 
) toM(d; a; b; 
). The stru
ture of the argument is as follows:



8 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMS� First we prove, in Proposition 8, that under �, the 
 20s in T kn 
orrespondto exa
tly 
 alignments of type ANE in �.� Se
ond, in Proposition 9, we prove that CEE(�)+CNN(�) equals the numberof bla
k verti
es in the diagram D. This implies that CEE(�) + CNN(�) =b� (n� k).� We 
omplete the proof with the following argument. Let m = AEE(�) +ANN(�)+AEN(�). We know that a+b+
 = k(n�k). Corteel [5℄ proved thatAEE(�)+ANN(�)+AEN(�)+ANE(�)+CEE(�)+CNN(�) = (k�1)(n�k).Thereforem+
+b�(n�k) = (k�1)(n�k), whi
h implies that m+
+b =k(n� k) = a+ b+ 
, and hen
e m = a.Proposition 8. If �(T kn ) = � then the number of 2's in T kn is equal to the numberof alignments of type ANE in �.Proof. Re
all that if � = �(T kn ) then the wexbottoms and the non-wexbottomsof � 
orrespond to the labels of the verti
al and horizontal steps, respe
tively, inthe south east border of the partition underlying T kn . Note that the position ofevery 2 in T kn 
an be given by spe
ifying the label of the edge above it and the edgeto its left. The label i of the edge above it will be a non-wexbottom, and the labelj > i of the edge to its left will be a weak ex
edan
e bottom. Sin
e j > i, and jis a wexbottom, and i is a non-wexbottom, the pair (i; j) is pre
isely an alignmentof type ANE. Conversely, any alignment of type ANE is a pair (i; j) where i < j,and i is a non-wexbottom, and j is a wexbottom. This implies that i is the label ofa horizontal step, and j is the label of a verti
al step. The fa
t that i < j impliesthat the box of the tableau indexed as above by i and j 
ontains a 2. �Proposition 9. Under the bije
tion �, there is a one-to-one 
orresponden
e be-tween bla
k verti
es in the diagram of the permutation tableau, and 
rossings oftypes CEE and CNN in the permutation.Proof. Re
all that bla
k verti
es 
orrespond to those 1's in a tableau that are nottopmost in their 
olumns. Let D be the diagram of T kn , and let � = (a1; : : : ; an) be�(T kn ). We will 
onstru
t a map � (indu
ed by �) whi
h takes ea
h 
rossing (i; j)(where i < j) of type CEE or CNN in � to a bla
k vertex d in D, and show that thisis a bije
tion. The map � is de�ned as follows. Let (i; j) be a 
rossing of type CEEor CNN. We 
laim that the paths (i! ai) and (j ! aj) interse
t in a unique edge.If that edge is horizontal, then let d be the left vertex of the edge. If that edge isverti
al, then let d be the bottom vertex of the edge.First we need to show that the paths (i! ai) and (j ! aj) interse
t in an edge.We will prove this when (i; j) is a 
rossing of type CEE; the proof for CNN is similar.Sin
e i < j and ai < aj , it is 
lear that the paths must 
ross ea
h other at leaston
e.Consider the �rst point x at whi
h the path (j ! aj) interse
ts the path (i! ai).We will show that the interse
tion here will 
ontain an edge. Clearly this interse
-tion must be in the zig-zag portion of the path (i! ai). If we let d1; d2; : : : ; dt bethe sequen
e of verti
es en
ountered by the path (i ! ai) in its zig-zag portion,then, by 
onstru
tion of that path, there are no verti
es in the diagram D betweenany dr and dr+1. Note that if the path (j ! aj) interse
ts the path (i ! ai) inonly the point x (rather than an edge 
ontaining x), then it is easy to see�using
ondition (2) in the de�nition of permutation tableaux�that x must a
tually be avertex in D, lo
ated between some dr and dr+1. This is a 
ontradi
tion.



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 9Next, we show that the paths (i! ai) and (j ! aj) interse
t in a unique edge.If the two paths were to interse
t a se
ond time (and they may indeed interse
tagain in a vertex), then this interse
tion must take pla
e in the zig-zag portion ofboth paths. Su
h a point e of interse
tion must be approa
hed via a south step by(i! ai) and must be approa
hed via an east step by (j ! aj). But then, a

ordingto the pro
edure de�ning �, the path (i! ai) will immediately turn east, and thepath (j ! aj) will immediately turn south. Therefore this interse
tion is not anedge interse
tion.We have thus shown that � indu
es a well-de�ned map from 
rossings to bla
kverti
es. We will now show that this map is a bije
tion by 
onstru
ting its inverse.Namely, to ea
h bla
k vertex in D we need to produ
e a 
rossing of type CEE orCNN. We do this as follows. Given a bla
k vertex d, there is a path (i! ai) on Dwhi
h enters d by going south, and then leaves d going east. (It is easy to see thatsu
h a path exists by tra
ing ba
kwards through the algorithm that de�ned themap �.)If the path (i ! ai) is an ex
edan
e, then 
onsider the unique path (j ! aj)whi
h enters d traveling west. This path must be a weak ex
edan
e, as it is only thepaths of weak ex
edan
es whi
h 
ontain steps to the west. Moreover, (i; j) mustform a 
rossing of type CEE, sin
e the two paths interse
t in an edge (and we haveseen that two paths whi
h are both weak ex
edan
es may not interse
t in an edgemore than on
e).On the other hand, if the path (i ! ai) is a non-ex
edan
e, then 
onsider theunique path (j ! aj) whi
h enters d traveling north. Clearly this path must bea non-ex
edan
e, as it is only the paths of non-ex
edan
es whi
h 
ontain stepsnorth. Moreover, (i; j) must form a 
rossing of type CNN, sin
e the two paths mustinterse
t in a unique edge.Therefore � is a bije
tion between the set of CEE- and CNN-
rossings in �, andthe set of bla
k verti
es in D. �This 
ompletes the proof of Theorem 7.4. Permutation patternsIn this se
tion we introdu
e ne
essary terminology and de�nitions that will beused in the next se
tion, where we 
onstru
t a bije
tion 	 : Sn �! Sn. Thisbije
tion proves the equidistribution of 
ertain linear 
ombinations of the statis-ti
s in De�nition 6 (alignments and 
rossings) with 
ertain linear 
ombinations ofgeneralized permutation patterns, whi
h we de�ne below. The 
omposition of 	and the bije
tion � from Se
tion 2 then proves the equidistribution of our tableauxstatisti
s (numbers of 0's, 1's and 2's) with the pattern statisti
s to be de�ned here.A 
lassi
al permutation pattern p = p1p2 : : : pk is simply a permutation, and ano

urren
e of p in a permutation � = a1a2 : : : an is a subsequen
e ai1 ; ai2 ; : : : ; aikof � (where i1 < i2 < � � � < ik) whose letters are in the same relative order as in p.For example, the permutation 416235 has two o

urren
es of the pattern (2 3 1),namely the subsequen
es 462 and 463.In the literature, the pattern (2 3 1) is usually denoted simply by 231. Wewrite it here with dashes between 
onse
utive letters in order to emphasize thatthere are no restri
tions on the distan
e between the letters in a permutation thatform an o

urren
e of the pattern. A generalized pattern is a pattern where somepairs of adja
ent letters may la
k a dash between them. Su
h an absen
e indi
ates



10 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSthat the 
orresponding letters must be adja
ent in an o

urren
e of the patternin a permutation. For example, the pattern (2 31) o

urs only on
e in 416235,namely as 462. In the subsequen
e 463, whose letters are in the same relative orderas those of (2 31), the last two letters are not adja
ent in 416235 as required foran o

urren
e of (2 31).The reason for writing patterns in parentheses is that we will 
onsider them asfun
tions from the set of permutations to the natural numbers, where the value ofa pattern p on a permutation � is the number of di�erent o

urren
es of p in �.For example, if � = 416235, as above, then (2 3 1)� = 2 and (2 31)� = 1.It is easy to see that there are exa
tly twelve di�erent patterns of length 3 withone dash. Six of these will be 
onsidered here, namely (1 32), (2 31), (3 21),(21 3), (31 2) and (32 1). These are all the patterns of length 3 with one dashwhose two letters not separated by a dash are in de
reasing order.A des
ent in a permutation � = a1a2 : : : an is an i su
h that ai > ai+1. Wesay that ai is a des
ent top and ai+1 a des
ent bottom. The set of des
ent tops isdenoted destopset, and the set of des
ent bottoms desbotset. Moreover, we letdestopsum be the sum of the elements of destopset, and likewise for desbotsum.We now de�ne the linear 
ombinations of patterns whose joint distribution onpermutations mat
hes the distribution of 0's, 1's and 2's on permutation tableaux.De�nition 10. Given a permutation �, leta(�) = (21 3)� + (3 21)� + (31 2)� ��des�2 �;b(�) = (2 31)� + n� 1� des�;
(�) = (1 32)� + (32 1)� ��des�2 �:It is important to note that sin
e we will be 
onsidering the quadruple statisti

onsisting of a, b, 
 and the number of des
ents, the terms �des�2 � and n� 1� des�in the above de�nition only e�e
t a shift, by a 
onstant, of the statisti
s involved,but not an essential modi�
ation.It is also important to note that the sum (1 32)� + (32 1)� in 
 is equalto desbotsum� � des�. Namely, for ea
h des
ent : : : yx : : : in �, the pattern(1 32) 
ounts the letters to the left of the des
ent that are smaller than its des
entbottom (x). The letters to the right of the des
ent, and smaller than x, are 
ountedby (32 1), so 
learly we are 
ounting all letters in � that are smaller than x.Analogously, the sum (21 3)� + (3 21)� in a equals the sum of n � t over alldes
ent tops t in �.This leaves (31 2) in a, whi
h sums the left embra
ing numbers in �, so 
alledbe
ause (31 2) 
ounts, for ea
h letter x in �, the des
ents to the left of x that em-bra
e x, that is, where the letters of the des
ent are larger and smaller, respe
tively,than x. Analogously, the pattern (2 31) in b sums the right embra
ing numbersin �.To be more pre
ise, we de�ne the right embra
ing number of ea
h letter ` in �,denoted rembr(`), as the number of des
ents : : : yx : : : to the right of ` in � su
hthat x < ` < y.



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 11Lemma 11. Let des be the number of des
ents in a permutation �, and let a(�),b(�) and 
(�) be as above. Thena(�) + b(�) + 
(�) = (des+1)(n� des�1):Proof. Ea
h of the patterns involved in a + b + 
 
ounts 
ertain letters to the leftor to the right of ea
h des
ent in �. Together they 
ount, for ea
h des
ent in �, allthe letters in � not belonging to the des
ent itself. There are, of 
ourse, n� 2 su
hletters for ea
h des
ent. Thus, the sum of all the patterns in a(�) + b(�) + 
(�) isdes �(n� 2). Completing the proof now only requires a routine 
al
ulation. �5. Another bije
tionWe now des
ribe the 
onstru
tion of a bije
tion 	 : Sn �! Sn that takes apermutation � to a permutation � su
h that the set of des
ent tops in � determinesthe set of weak ex
edan
e tops in � and the set of des
ent bottoms in � determinesthe set of weak ex
edan
e bottoms in � . Moreover, the right embra
ing numberof i in � be
omes CEE(i) in � if i is a wexbottom in � and be
omes CNN(i) in �otherwise.Re
all the biword notation for permutations. For example, we write the permu-tation 31524 as �3 1 5 2 41 2 3 4 5� :In order to 
onstru
t 	(�) (where � 2 Sn), we �rst 
onstru
t two biwords, �f 0f �and �g0g�, and then form the biword � 0 = �f 0 g0f g � by 
on
atenating f and g, andf 0 and g0, respe
tively. The words f; f 0; g; g0 are de�ned as follows (we will provelater, in Theorem 12, that this is possible):� The letters of f 
onsist of the set obtained by adding 1 to ea
h of thedes
ent bottoms in � and then adjoining the letter 1. The letters of f areordered in
reasingly.� The letters of g 
onsist of the set obtained from the non-des
ent bottomsin � by removing the letter n and adding 1 to the remaining letters. Theletters of g are ordered in
reasingly.� The letters of f 0 
onsist of the set obtained by subtra
ting 1 from ea
h ofthe des
ent tops of � and then adjoining the letter n. The letters of f 0 areordered so that, for a in f 0, CEE(a) in � is the right embra
ing number ofa in �. (Observe that CEE(a) only depends on the relative order of thewextops in � , together with their 
orresponding wexbottoms.)� The letters of g0 
onsist of the set obtained by removing 1 from the setof non-des
ent tops in � and then subtra
ting 1 from the remaining let-ters. The letters of g0 are ordered so that, for a in g0, CNN(a) is the rightembra
ing number of a in �.Rearranging the 
olumns of � 0, so that the bottom row is in in
reasing order, weobtain the permutation � = 	(�) as the top row of the rearranged biword. Beforewe prove that this 
an always be done in the way des
ribed, we give an example.Let � = 215896374. Then � has



12 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSDes
ent bottoms: 1 3 4 6 Non-des
ent bottoms: 2 5 7 8 9Des
ent tops: 2 6 7 9 Non-Des
ent tops: 1 3 4 5 8The right embra
ing numbers are 2 for 5, 1 for 6 and 8, and 0 for all others:21-5-8-963-742 1 1We 
onstru
t a permutation with the 
orresponding wexbottoms and wextops,and the 
orresponding nonzero values for CEE and CNN, that is, with CEE(5) = 2and CNN(6) = CNN(8) = 1. First, the wexbottoms are obtained by adding 1 to ea
hdes
ent bottom, and adjoining 1, whi
h is always a wexbottom. The wextops areobtained by subtra
ting 1 from the des
ent tops, and adjoining n, whi
h is alwaysa wextop. Thus, we getWexbottoms: (1) 2 4 5 7 Non-wexbots: 3 6 8 9Wextops: 1 5 6 8 (9) Non-wextops: 2 3 4 7We 
onstru
t the permutation in two parts, one for the weak ex
edan
es, the otherfor the non-weak ex
edan
es.Now, the de�nitions of CEE and CNN are su
h that CEE only applies to pairs ofweak ex
edan
es, and CNN only to pairs of non-weak ex
edan
es. We �rst 
onstru
tthe weak ex
edan
e part of the permutation, by de
iding where to pla
e ea
h ofthe wextops, in the pla
es given by the wexbots:_ _ _ _ _1 2 4 5 7We start from the right, in pla
e 7, whi
h has a 0 asso
iated to it (sin
e rembr(7) =0 in �). We need to put there the smallest number among the wextops that is atleast as large as 7 (otherwise, CEE(7) would ex
eed 0 in the resulting permutation).This is the number 8: 8_ _ _ _ _1 2 4 5 7This leaves the wextops 1, 5, 6, 9. The next pla
e, 5, has a 2 asso
iated to it(sin
e rembr(5) = 2 in �), so we have to put there a wextop that it is bigger thanexa
tly two of the remaining wextops that are at least as big as 5. This for
es usto make this 9 (and the two remaining wextops between 5 and 9 in size are 5 and6).We 
ontinue in this way until we have pla
ed all the wextops, in su
h a way thatthe values of CEE for the remaining pla
es are 0, sin
e 5 is the only letter amongthe wexbottoms here with a nonzero right embra
ing number in �:1 6 5 9 8_ _ _ _ _1 2 4 5 7The non-wex part is done in a similar way, but starting from the left, and weget: 2 3 4 7



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 13_ _ _ _3 6 8 9Observe that CNN(6) = CNN(8) = 1 and CNN(3) = CNN(9) = 0, as required.Con
atenating these two biwords, and sorting the 
olumns to get the bottom rowin in
reasing order, the permutation we obtain is 	(215896374) = 162593847.We now prove that the above pro
edure 
an always be 
arried out in the waydes
ribed.Theorem 12. Let db0(�) be the set obtained from desbotset(�) by adding 1 toea
h of its elements, and adjoining the letter 1.Let dt0(�) be the set obtained from destopset(�) by subtra
ting 1 from ea
h ofits elements, and adjoining the letter n.For a permutation � let wb(�) be the set of weak ex
edan
e bottoms of � and letwt(�) be the set of weak ex
edan
e tops of � .The map 	 des
ribed above is well de�ned, and has the following properties,where � = 	(�):(i) wb(�) = db0(�),(ii) wt(�) = dt0(�),(iii) CEE(�) + CNN(�) = rembr(�).Moreover, 	 is a bije
tion.Proof. Re
all that CEE(i) = 0 unless i is an ex
edan
e bottom, and that CNN(i) = 0unless i is a non-ex
edan
e bottom.Let the letters of wb(�) be b1; b2; : : : ; b`, ordered so that b` < � � � < b2 < b1.Look at the largest letter in wb(�), that is, b1. Suppose the embra
ing number ofb1 in � is e1. Then there are at least e1 des
ent tops in � that are larger than b1.Thus, by the 
onstru
tion of wt(�) from the des
ent top set of �, there are at leaste1+1 elements x in wt(�) su
h that b1 � x. So, we 
an �nd an element t1 in wt(�)su
h that wt(�) 
ontains pre
isely e1 elements x satisfying b1 � x � t1. Setting�(b1) = t1 guarantees that CEE(b1) = e1 in � .Look next at b2, the se
ond largest element in wb(�). Suppose its embra
ingnumber in � is e2. There are then at least e2 + 1 elements x in wt(�) su
h thatb2 � x. However, one of these elements is t1, whi
h has already been pla
ed tothe right of pla
e b2 in � , and so t1 
annot 
ontribute to CEE(b) in � . But, b1 + 1is a des
ent bottom in � and so its 
orresponding des
ent top, d, must be largerthan b1 +1 and hen
e larger than b2. Thus, b2 
annot be embra
ed by the des
ent: : : d(b1 + 1) : : : in �. Hen
e, the embra
ing number of b2 in � 
an be at most oneless than the number of elements x in wt(�) satisfying b2 � x. We 
an therefore�nd an element t2 6= t1 in wt(�) su
h that pre
isely e2 of the elements x in wt(�)apart from t1 satisfy b2 � x � t2.An analogous argument shows that the embra
ing number of bi in � 
an be atmost N + 1 � i, where N is the number of elements x in wt(�) with bi � x. We
an thus pla
e ea
h of the elements ti of wt(�) in � so that CEE(bi) in � equalsrembr(bi) in �.In parti
ular, ea
h pla
ement a

ording to the above algorithm will result in the
reation of a weak ex
edan
e. Namely, 
learly the k-th largest wexbottom is smallerthan or equal to the k-th largest wextop. Thus, by indu
tion, sin
e we 
onsider



14 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSthe wexbots in de
reasing order, the largest wextop unused at ea
h stage of thealgorithm is greater than or equal to the wexbottom being 
onsidered.To 
onstru
t the subword of � 
onsisting of non-wextops, we pro
eed in a similarway, ex
ept that we start from the smallest non-wexbottom. At ea
h stage, for thenon-wexbottom bi we �nd a non-wextop d that satis�es d < x < bi for pre
iselye elements x among the remaining non-wextops, where e = rembr(bi) in �. Theargument showing that this is always possible, and that ea
h pla
ement results in anon-weak ex
edan
e, is analogous to the 
ase of the weak ex
edan
e subword, andis omitted.To prove that 	 is a bije
tion, it su�
es to show that it is inje
tive, sin
e it isa map from Sn to itself. Let �1 and �2 be two permutations with 	(�1) = 	(�2).From the de�nition of 	 it is 
lear that �1 and �2 must have the same des
ent topsand des
ent bottoms and also the same right embra
ing numbers for ea
h letter. Itfollows from the proof of Theorem 4 in [2, p. 249℄ that a permutation is uniquelydetermined by its sets of des
ent bottoms and tops, respe
tively, together with theright embra
ing numbers of its letters. Thus, we must have �1 = �2.In fa
t, the proof of Theorem 4 in [2℄ 
an be applied dire
tly to our situationwith trivial modi�
ations, and yields a des
ription of the inverse of 	. �Re
all that wexbotsum(�) is the sum of all the wexbottoms in �. The following
orollary of Theorem 12 requires only straightforward 
al
ulations.Corollary 13.wextopsum	(�) = destopsum� + n� des�;wexbotsum	(�) = desbotsum� + des� + 1:We will use the following two lemmas, the �rst one proved by Corteel [5℄, in ourproofs of the equidistribution results between our tableaux statisti
s and permuta-tion statisti
s.Lemma 14 (Corteel [5℄). Let wex, AEE, ANN, AEN, ANE, CEE, CNN be as above.Then AEE +ANN +AEN +ANE +CEE +CNN = (wex�1)(n�wex):Lemma 15. AEN = �n2���n�wex2 �+wex�wextopsum;(1) ANE = wexbotsum��wex2 �:(2)Proof. Equation (1) is equivalent toAEN +wextopsum�wex = �n2���n�wex2 �:We will show that the sum in the left-hand-side above 
ounts all pairs (i; j), with1 � i < j � n, ex
ept those for whi
h neither of i and j is a weak ex
edan
e.Re
all that AEN 
ounts the pairs (i; j) su
h that j � aj < ai < i. Ea
h su
h pair
an be des
ribed as 
onsisting of a wextop w in the permutation, and a non-wextopthat is larger than w and to the right of w.We 
an interpret (wextopsum�wex) as the sum, over all wextops, of the sizeof the wextop, minus 1. Counting this for ea
h wextop w 
an be done by 
ounting



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 15all the letters in the permutation that are stri
tly smaller than w. Doing this for allwextops is equivalent to 
ounting all pairs of letters in the permutation that either
onsist of two wextops, or a wextop and a non-wextop, where the wextop is thelarger of the two.Therefore AEN and (wextopsum�wex) together 
ount all pairs of letters inthe permutation, ex
ept those 
onsisting of two non-wextops. (Observe that it isimpossible to have a non-wextop z and a wextop w su
h that z is left of w andz > w.) The total number of pairs of letters in a permutation in Sn is of 
ourse�n2�, and the number of pairs of non-wexbots is �n�wex2 �, whi
h 
ompletes the proof.Equation 2 
an be proved in a similar manner. �We 
an now prove the main results about the equidistribution implied by thebije
tion 	.Theorem 16. Let � = 	(�). We have des� = wex� � 1;(3) (31 2)� = AEE� +ANN�;(4) (21 3)� + (3 21)� ��des�2 � = AEN�;(5) (2 31)� = CEE� +CNN�;(6) (1 32)� + (32 1)� ��des�2 � = ANE�:(7)Proof. Equations (3) and (6) follow dire
tly from Theorem 12, sin
e (2 31)� is thesum of the right embra
ing numbers for all the letters in �. We will prove (5) here;the proof of (7) is analogous and is omitted. Having done this, Equation (4) followsfrom the other four identites in the present theorem, together with Lemmas 14and 11 and routine 
al
ulations.To prove Equation (5), observe that(21 3)� + (3 21)� = n � des� � destopsum�:This is be
ause (21 3)� + (3 21)� 
ounts the letters in � larger than the des
enttop b for ea
h des
ent : : : ba : : : in �. A

ording to Corollary 13, the right-hand-sidein the equation above 
an be rewritten as follows:n � des� � destopsum = n � des� �wextopsum � + n� des�:By Lemma 15, this is equal ton � des� +�AEN� �wex� ��n2�+�n�wex�2 ��+ n� des�;whi
h, in turn, is equal toAEN� + n � des� � (des� + 1)��n2�+�n� (des� + 1)2 �+ n� des�:To show that this last expression is equal to AEN� + �des�2 � is straightforward. �Note that Equations (4) and (5) together imply that(31 2)� + (21 3)� + (3 21)� ��des2 � = AEE� +ANN� +AEN�:This, together with Theorem 7, leads to the following 
orollary.



16 EINAR STEINGRÍMSSON AND LAUREN K. WILLIAMSCorollary 17. Let T (d; a; b; 
) be the set of permutation tableaux with d + 1 rowsand (n � d � 1) 
olumns, whi
h are �lled with pre
isely a 0's, b 1's and 
 2's. LetP (d; a; b; 
) be the set of all permutations � 2 Sn, su
h that� d = des(�),� a = [(31 2) + (21 3) + (3 21)℄� � �des�2 �,� b = (2 31)� + n� 1� des�,� 
 = [(1 32) + (32 1)℄� � �des�2 �.Then jT (d; a; b; 
)j = jP (d; a; b; 
)j.6. Enumeration resultsOne ni
e appli
ation of permutation tableaux is that they fa
ilitate enumera-tion of permutations a

ording to various statisti
s. This is be
ause permutationtableaux satisfy a rather simple re
urren
e, whi
h we now explain.Fix a partition � = (�1; : : : ; �k). Let F�(p; q) be the polynomial in p and q su
hthat the 
oe�
ient of psqt is the number of valid �llings of the Young diagram Y�whi
h 
ontain s 0's and t 1's. As Figure 7 illustrates, there is a simple re
urren
efor F�(p; q).Expli
itly, any valid �lling of � is obtained in one of the following ways:� inserting a 
olumn whose bottom entry is 1 and whose other entries are 0after the (�k � 1)st 
olumn of a valid �lling of (�1 � 1; �2 � 1; : : : ; �k � 1);� adding a 1 to the end of the bottom row of a valid �lling of the shape(�1; �2; : : : ; �k�1; �k � 1);� adding an all-zero row of length �k�1 to a valid �lling of (�1; : : : ; �k�1).Thus, we have the following re
urren
e.Proposition 18.F�(p; q) = pk�1qF(�1�1;�2�1;:::;�k�1)(p; q) + qF(�1;�2;:::;�k�1;�k�1)(p; q)+ p�kF(�1;:::;�k�1)(p; q):
or

00 0

*
*
*

* * 1* *

*
*
*or

1
0
0
0 Figure 7. Re
urren
e for F�(p; q)It is straightforward to 
ompute F�(p; q) when k (the number of rows of �) issmall. Here are the �rst two formulas.Proposition 19. F(�1)(p; q) = q�1 :F(�1 ;�2)(p; q) = �q�1�1p�2+1 + q�1�1[2℄�2+1p;q :In the above expression, [2℄p;q is the p; q-analog of 2. Re
all that the p; q-analogof the number n is pn�1 + pn�2q + pn�3q2 + � � �+ qn�1, denoted [n℄p;q.Let Dk;n(p; q; r) := P� F�(p; q)rk(n�k)�j�j, where � ranges over all partitions
ontained in a k � (n � k) re
tangle. By Theorem 7, Dk;n(p; q; r) enumerates
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ording to the number of weak ex
edan
es, several kinds of align-ments, and 
rossings. And by Corollary 17, Dk;n(p; q; r) enumerates permutationsa

ording to the number of des
ents and o

urren
es of various generalized pat-terns. Therefore it would be ni
e to get an expli
it expression for Dk;n(p; q; r), forexample by solving expli
itly for F�(p; q) and then by summing over partitions �
ontained in a k � (n� k) re
tangle.For �xed small k, it is not too di�
ult to 
ompute the generating fun
tionDk(p; q; r; x) := PnDk;n(p; q; r)xn. Here are the �rst few formulas. Note thatit is easy to determine what the denominator should be for Dk(p; q; r; x), but thenumerator is signi�
antly more 
ompli
ated.Proposition 20.D1(p; q; r; x) = x1� qxD2(p; q; r; x) = x2(1� pqx)(1� qrx)(1� q[2℄p;qx)D3(p; q; r; x) = x3(1 + pq2x� p3q2rx2 � 2p2q3rx2 � pq4rx2)(1� p2qx)(1� pqrx)(1 � qr2x)(1� pq[2℄p;qx)(1� qr[2℄p;qx)(1� q[3℄p;qx)One 
an derive these formulas by either using the methodology outlined above(i.e. by summing F�(p; q)), or else by translating the problem of enumerating per-mutation tableaux into a problem about enumerating 
ertain weighted latti
e paths,and then by enumerating these latti
e paths. In order to sket
h the latter method,let us de�ne a bad zero in a permutation tableau to be a 0 whi
h lies dire
tly under-neath some 1. Note that if some 
olumn C in a permutation tableau T kn 
ontainsa bad zero in the rth row, then every 
olumn to the left of C must also 
ontain azero in the rth row.In the latti
e path method for enumeration of permutation tableaux, we asso
iateto ea
h permutation tableau T kn a weighted latti
e path L = fLigni=1 
onsisting ofn steps in the plane, whi
h must be of the following types: (1; 1) (a northeast step),(1; 0) (an east step), and (1;�j), where 1 � j � k�1 (a southeast step). Ea
h stepLi in the latti
e path represents the step Pi in the partition path fPigni=1. (Re
allthat the partition path follows the shape of the partition Y� and travels from thenortheast 
orner to the southwest 
orner of the k � (n � k) re
tangle 
ontainingT kn .) The steps (1; 1) in L 
orrespond to verti
al steps in the partition path, andhave weight x. A step (1; 0) in L 
orresponds to a horizontal step in the partitionpath su
h that the 
orresponding 
olumn C of T kn does not introdu
e any bad zeros(ex
ept those that were for
ed by bad zeros to the right of C). Su
h a step hasweight paqbr
x, where a, b, and 
 are the numbers of 0's, 1's, and 2's, respe
tively,in 
olumn C. (Note that a+ b+ 
 = k.) Finally, a step (1;�j) in L 
orresponds toa horizontal step in the partition path su
h that the 
orresponding 
olumn C of T knintrodu
es exa
tly j new bad zeros (that were not for
ed by bad zeros in 
olumns tothe right of C). As before, su
h a step has weight paqbr
x, where a, b, and 
 are thenumbers of 0's, 1's, and 2's, respe
tively, in 
olumn C. Observe that the height ofany point in the latti
e path L is equal to the number of boxes of the 
orresponding
olumn of T kn whi
h 
an be �lled with either a 0 or a 1. By asso
iating weighted
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e paths to permutation tableaux in this way, we 
an fa
ilitate 
omputation ofthe generating fun
tions Dk(p; q; r; x) for small k.Now we will give 
omplete results about a 
ertain spe
ialization of Dk;n(p; q; r).Let Ek;n(q) := Dk;n(1; q; 1). An expli
it formula for Ek;n(q) was found in [9℄; theproof utilized a re
urren
e similar to that in Proposition 18.Theorem 21 (Williams [9℄).Ek;n(q) = qn�k2 k�1Xi=0(�1)i[k � i℄nqki�k ��ni�qk�i +� ni� 1�� :The polynomials above have many ni
e properties. It was observed in [9℄ thatif one renormalizes Ek;n(q) by de�ning Êk;n(q) := qk�nEk;n(q), then Êk;n(q) isa new q-analog of the Eulerian numbers (distin
t from Carlitz' 
lassi
al q-analogof the Eulerian numbers [4℄). Furthermore, Êk;n(q) spe
ializes at q = �1; 0; 1to the binomial 
oe�
ients, the Narayana numbers, and the Eulerian numbers.Additionally, Êk;n(q) = Ên+1�k;n(q). It was shown more re
ently by Corteel [5℄that the polynomials Êk;n(q) naturally relate to the ASEP model in statisti
alphysi
s.Table 1 lists Êk;n(q) for n = 4; 5; 6; 7.Theorem 21 together with Corollary 17 implies the following result.Corollary 22. The number of permutations in Sn with k � 1 des
ents and mo

urren
es of the pattern (2� 31) is equal to the 
oe�
ient of qm inÊk;n(q) = q�k2 k�1Xi=0(�1)i[k � i℄nqki ��ni�qk�i +� ni� 1�� :This result was �rst 
onje
tured by the authors of this paper, and �rst provedby Corteel [5℄. The formula Êk;n(q) is the �rst known polynomial expression whi
hgives the 
omplete distribution of a permutation pattern of length greater than 2(the two 
ases of length 2 
orrespond to the Eulerian numbers and the 
oe�
ientsof [n℄!, respe
tively).For the polynomials Êk;n(q), both ordinary and 
ontinued fra
tion generatingfun
tions are known. It 
an be shown [9℄ that E(q; x; y) :=Pn;k qn�kÊk;n(q)ykxnis equal to 1Xi=0 yi(q2i+1 � y)qi2+i+1(qi � qi+1[i℄x+ [i℄xy) :Additionally, Corteel [5℄ used results of Clark, Steingrímsson, and Zeng [2℄ toshow the following:Theorem 23 (Corteel [5℄).Ê(q; x; y) = 11� b0x� �1x21� b1x� �2x21� b2x� �3x2. . . ;



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 19Ê1;4(q) 1Ê2;4(q) 6 + 4q + q2Ê3;4(q) 6 + 4q + q2Ê4;4(q) 1Ê1;5(q) 1Ê2;5(q) 10 + 10q + 5q2 + q3Ê3;5(q) 20 + 25q + 15q2 + 5q3 + q4Ê4;5(q) 10 + 10q + 5q2 + q3Ê5;5(q) 1Ê1;6(q) 1Ê2;6(q) 15 + 20q + 15q2 + 6q3 + q4Ê3;6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6Ê4;6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6Ê5;6(q) 15 + 20q + 15q2 + 6q3 + q4Ê6;6(q) 1Ê1;7(q) 1Ê2;7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5Ê3;7(q) 105 + 245q + 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8Ê4;7(q) 175+441q+588q2+532q3+364q4+196q5+84q6+28q7+7q8+q9Ê5;7(q) 105 + 245q + 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8Ê6;7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5Ê7;7(q) 1 Table 1. Êk;n(q)where bn = y[n+ 1℄q + [n℄q, �n = y[n℄2q, and [n℄q = 1 + q + � � �+ qn�1.Finally, we remark that, up to a shift by a 
onstant, the bistatisti
 
ounting thenumber of rows and number of 0's in permutation tableaux has the Euler-Mahoniandistribution, that is, it has the same distribution as the number of des
ents andthe major index for permutations (the major index is the sum of the pla
es of thedes
ents in a permutation). Note �rst that the statisti
 a in Corollary 17, whenstripped of �des2 � (whi
h is a 
onstant when 
onsidering a �xed number of des
ents),has the same distribution as the statisti
(8) (1 32) + (32 1) + (2 31):This is be
ause the statisti
 in (8) is obtained by taking the reverse 
omplement ofthe statisti
 (31 2)+(21 3)+(3 21), that is, by reversing ea
h of the patterns andthen repla
ing ea
h letter i by 4� i. Doing the same with ea
h permutation in Sn(with 4 repla
ed by n+1) is a bije
tion from Sn to itself, and this bije
tion 
learlyproves the equidistribution of (31 2) + (21 3) + (3 21) with (1 32) + (32 1) +(2 31), even when ea
h statisti
 is taken jointly with the number of des
ents (whi
his invariant under reverse 
omplement). The statisti
 (1 32)+ (32 1) + (2 31) is
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 mak, as pointed out in [1℄, and it was shown by Foata andZeilberger [6℄ that (des;mak) has the Euler-Mahonian distribution.1Be
ause the bistatisti
 
ounting number of rows and number of 0's has the Euler-Mahonian distribution, the spe
ializationDk;n(p; 1; 1) is essentially Carlitz' 
lassi
alq-analog of the Eulerian numbers [4℄. Therefore the polynomials Dk;n(p; q; r) gen-eralize both the 
lassi
al q-analog of the Eulerian numbers and the new q-analog ofthe Eulerian numbers found in [9℄.7. Open problemsThe bije
tions taking permutation tableaux to permutations seem to have severalproperties that merit further investigation. We list a few of these, along with someother open problems.(1) Find an expli
it expression for Dk;n(p; q; r).(2) We say that a 1 in a permutation tableau is essential if it is the topmost onein its 
olumn or the leftmost 1 in its row. A tableau is determined by itsessential 1's: all the other 1's are determined by these, be
ause of 
ondition(2) in the de�nition of a permutation tableau. What do the essential 1's
orrespond to in the 
orresponding permutation?We 
onje
ture that the distribution of permutation tableau a

ording tothe number of essential 1's is equal to that for number of 
y
les in per-mutations. This distribution is the same as that for Left-to-Right minima.Moreover, we 
onje
ture that the joint distribution of tableaux a

ording tothe number of rows and the number of essential 1's equals that of permuta-tions a

ording to des
ents and Left-to-Right-minima. That bistatisti
, inturn, has the same distribution as the number of weak ex
edan
es and thenumber of 
y
les of a permutation, when written in standard 
y
le form.(3) The number of 0's in a tableau 
orresponds to the total number of o

ur-ren
es of the patterns (3 21), (21 3) and (31 2). It is easy to see thatthese patterns have the same distributions as (1 32), (32 1) and (2 31),respe
tively. To prove this, simply reverse ea
h permutation in Sn. Can wepartition the 0's in a tableau into two sets, one 
orresponding to o

urren
esof (3 21) + (21 3) and the other to o

urren
es of (31 2)? Observe thatthe �rst one of these sets would 
orrespond to des
ent tops and the se
ondone to left embra
ings. Thus, these sets would be symmetri
 
ounterpartsof 2's and 1's respe
tively, although this symmetry is not transparent inthe tableaux.(4) The re�e
tion of a permutation tableau T kn in its north-east/south-westdiagonal yields a permutation tableau if and only if T kn has a 1 in ea
h row.That is equivalent to the asso
iated permutation being �xed point free.Whi
h permutation is asso
iated to the re�e
ted tableau (that tableau isalso �xed point free be
ause it has a 1 in ea
h row)?(5) A permutation tableau T must have at least one 1 in ea
h 
olumn. If ithas only this minimum number of 1's, then the 
orresponding permutation,that is, 	�1(�(T )), has no o

urren
es of the pattern (2 31). It has been1A
tually, the statisti
 (1 32) + (32 1) + (2 31) is a slight variation on mak, as de�ned byFoata and Zeilberger, but is easily seen to have the same distribution when taken together withthe number of des
ents. Foata and Zeilberger's mak is a
tually equal to the statisti
 
alled maklin [1, Table 1℄



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 21shown (see [3℄), that permutations avoiding this pattern are enumerated bythe Catalan numbers. Is there a bije
tion from these tableaux to any of thewell known obje
ts enumerated by Catalan numbers, su
h as Dy
k paths?(6) Find a better des
ription of the bije
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