PERMUTATION TABLEAUX AND PERMUTATION PATTERNS

EINAR STEINGRIMSSON AND LAUREN K. WILLTAMS

ABsTRACT. In this paper we introduce and study a class of tableaux which
we call permutation tableaux; these tableaux are naturally in bijection with
permutations, and they are a distinguished subset of the J-diagrams of Alex
Postnikov [7, 9]. The structure of these tableaux is in some ways more transpar-
ent than the structure of permutations; therefore we believe that permutation
tableaux will be useful in furthering the understanding of permutations. We
give two bijections from permutation tableaux to permutations. The first bijec-
tion carries tableaux statistics to permutation statistics based on relative sizes
of pairs of letters in a permutation and their places. We call these statistics
weak excedance statistics because of their close relation to weak excedances.
The second bijection carries tableaux statistics (via the weak excedance sta-
tistics) to statistics based on generalized permutation patterns. We then give
enumerative applications of these bijections. For example, we give generat-
ing functions enumerating permutation tableaux according to their content,
which therefore enumerate permutations according to the number of occur-
rences of various generalized patterns. We conclude our paper with a list of
open problems.

1. INTRODUCTION

The aim of this article is to advertise a new class of tableaux together with two
curious bijections for the study of permutations. We call these tableaux permutation
tableauz; they are naturally in bijection with permutations, and are a distinguished
subset, of Alex Postnikov’s I-diagrams [7], which were enumerated by the second
author [9] because of their connection with the totally nonnegative part of the
Grassmannian.

Recall that a partition A = (A1, ..., \r) is a weakly decreasing sequence of non-
negative integers. For a partition A, where Y \; = m, the Young diagram Y, of
shape A is a left-justified diagram of m boxes, with A; boxes in the i-th row.

We define a permutation tableau T,* to be a partition A such that Y} is contained
in a k x (n — k) rectangle, together with a filling of the boxes of Yy with 0’s and 1’s
such that the following properties hold:

(1) Each column of the rectangle contains at least one 1.
(2) There is no 0 which has a 1 above it in the same column and a 1 to its left
in the same row.

We call such a filling a walid filling of Y. Observe that the requirement in (1)
implies that the Young diagram must have n — k columns, whereas the number of
rows may be smaller than k.
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If we forget the requirement (1) above we recover the definition of a I-diagram [7].
Figure 1 gives an example of a permutation tableau.
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FIGURE 1. A permutation tableau

We will also think of a permutation tableau T.,F as a k x (n — k) array of 0’s,
1’s, and 2’s, by simply taking the previous description of a permutation tableaux
and putting a 2 in every box of the rectangle which is not in Y}, as in Figure 2.
We position the partition shape so that its top row lies at the top of the rectangle;
therefore the 2’s cut out a (rotated) Young diagram in the southeast corner of the
rectangle.
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FIGURE 2. Another representation of a permutation tableau

Postnikov [8] has described a map that takes permutation tableaux contained in
a kx (n— k) rectangle to permutations in S,, with k weak excedances. In this paper
we give a simpler description of this map, prove that it is a bijection, and show that
this map in fact preserves many more statistics. Namely, the numbers of 0’s, 1’s
and 2’s, respectively, in a permutation tableau equal certain linear combinations of
certain statistics defined on the corresponding permutation. Each of these statistics
counts pairs of indices (i, j) in a permutation, according to the relative sizes of the
letters in those places and the place numbers themselves. These statistics were
defined by Corteel in [5].

We then define another bijection, taking permutations to permutations and
translating the statistics mentioned above into certain linear combinations of gen-
eralized permutation patterns. These combinations between them contain precisely
half the generalized patterns of length 3 with one dash (see Section 4).
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We conclude our paper by giving various enumerative applications of our bijec-
tions. The structure of permutation tableaux is in many ways more transparent
than the structure of permutations, and hence lends itself more easily to enumer-
ation. For example, by using our bijections together with results of the second
author [9], we are able to give the entire distribution of permutations according
to the number of occurrences of the generalized pattern (2-31). This is the first
such result for any pattern of length 3 (or more). However, this particular result,
although first conjectured by the present authors, was first proved by Corteel [5],
whose work provided us with a crucial piece of the puzzle solved here.

Another interesting consequence of the results presented here is that the statistic
counting permutation tableaux according to the number of rows and number of 0’s
is an Euler-Mahonian statistic, that is, has the same distribution as the bistatistic
on permutations consisting of the number of descents and the major index. It fol-
lows that if we define Dy, ,(p,q,r) to be the polynomial enumerating permutation
tableaux T,* according to the number of 0’s, 1’s, and 2’s, then Dy ,(p, g¢,7) special-
izes to Carlitz’ classical g-analog of the Eulerian numbers [4], as well as to the more
recent g-analog of the Eulerian numbers that was studied in [9].

2. BIJECTION FROM PERMUTATION TABLEAUX TO PERMUTATIONS

In this section we describe a bijection ® from permutation tableaux to permuta-
tions. More precisely, ® is a bijection from permutation tableaux 7,F to permuta-
tions in the symmetric group §,, with k& weak excedances. Here, a weak excedance
of a permutation 7 is a value 7 (i) such that (i) > i. In this situation we say that i
is a weak excedance bottom of w and that 7 (i) is a weak excedance top of . To make
the notation less cumbersome, we abbreviate these as wexbottoms and weztops, re-
spectively. Non-weak excedance bottoms and non-weak excedance tops are defined
in the obvious way, in terms of i and x (i) such that (i) < i, and are abbreviated
non-wezbots and non-wextops, respectively. The number of weak excedances in 7
will be denoted wex 7. Also, we let WEXBOTSUM be the sum of all the wexbottoms
in 7.

We remark that Postnikov [8] defined a map that is equal to ® but his descrip-
tion was much more complicated and went through the intermediate step of web
diagrams.

Before giving the bijection ®, we must define the diagram D(T,*) associated with
Tk as follows. Regard the south-east border of the partition Y, contained in the
k x (n — k) rectangle as giving a path (the partition path) P = {P;}?_; of length n
from the northeast corner of the rectangle to the southwest corner of the rectangle:
label each of the (unit) steps in this path with a number from 1 to n according to
the order in which the step was taken. Then, remove the 0’s from 7,* and replace
each 1 in T* with a vertex. We will call the top vertex in each column a white
vertex and all other vertices black vertices. Finally, from each vertex v, draw an
edge to the east and an edge to the south; each such edge should connect v to either
a closest vertex in the same row or column, or to one of the labels from 1 to n. The
resulting picture is the diagram D(TF). See Figure 3.

We now define the permutation 7 = ®(T*) via the following procedure. For
eachi € {1,...,n}, find the corresponding position on D(T,*) which is labeled by i.
If the label 7 is on a vertical step of P, start from this position and travel straight
west as far as possible on edges of D(7,F). Then, take a “zig-zag” path southeast,
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FiGUure 3. The diagram of a tableau. The topmost 1 in each

column becomes a white vertex, and the other 1’s become black
vertices.
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F1GURE 4. The paths taken by 1 and 6: 7(1) =7, n(6) = 2.

by traveling on edges of D(T,*) south and east and turning at each opportunity
(i.e. at each new vertex). This path will terminate at some label j > i, and we let
m(i) = j. If i is not connected to any edge (equivalently, if there are no vertices
in the row of i) then we set 7(i) = 4. Similarly, if the label i is on a horizontal
step of P, start from this position and travel north as far as possible on edges of
D(T}). Then, as before, take a zig-zag path south-east, by traveling on edges of
D(T¥) east and south, and turning at each opportunity. This path will terminate
at some label j < i, and we let 7(i) = j.

See Figure 4 for a picture of the path taken by i.

The following three lemmas are clear from the construction above.

Lemma 1. In ®(T}), the letter i is a fized point if and only if there is an entire
row in T,* that has no 1’s and whose right hand edge is labeled by i. In particular,
n,n—1,...,n—m+1 are fived points in 7 if and only if the bottom m rows of T,*
(in the k x (n — k) rectangle) consist entirely of 2’s.

Lemma 2. Any directed step in a path on D(7;lk) determines the path completely.

It follows that ®(7,F) is a permutation.
As an example, if 7;5 is the permutation tableau whose diagram is given in
Figures 3 and 4, then ®(7.*) = 74836215.



PERMUTATION TABLEAUX AND PERMUTATION PATTERNS 5

Lemma 3. The weak excedance bottoms of m = ®(T,*) are precisely the labels on
the vertical edges of P. The non-weak excedance bottoms of © are precisely the
labels on the horizontal edges of P. In particular, ®(T}) is a permutation in S,
with precisely k weak excedances.

Theorem 4. The map ® is a bijection from permutation tableauz to permutations.

Proof. To prove that ® is a bijection, we will give an explicit description of its
inverse, again via an algorithmic procedure. First we need to define a relative fized
ay...dn
by ... by
also. A relative fixed point is a pair (b,,ap) such that if a, is the j-th smallest
letter among the a; then b, is also the j-th smallest letter among the b;.

5314
6213
the second smallest letter in its row.

Note that we will use the biword notation (

point in any biword , where the a;’s are distinct integers and the b;’s

For example, in , the pair (2, 3) is a relative fixed point, since each is

ay...a .
1 n") as an alternative repre-

sentation of the permutation ay ... a,.

(111 o Z") . We now give the procedure for computing

Let 7 be the permutation <
o (7).

0. Compute the weak excedance bottoms of 7 to get the shape of the partition
in 7.F (see Lemma 3). Let 7 = .

1. Check for relative fixed points in 7. If (4, ) is a relative fixed point then fill
with 0’s the as yet undetermined part of the row corresponding to the weak
excedance bottom i. Recompute 7 by removing the relative fixed points.

2. Suppose we have determined the content of the & rightmost columns. Then
look at the next column to the left, which is indexed by a non-excedance
bottom r (that is, by the label on the horizontal step at the bottom of that
column (Lemma 3)). Knowing that r — a, in 7 uniquely determines the
position p of the highest 1 in the column corresponding to r, since there
is a unique zig-zag path going backwards (north-west) from a, to a box in
the column above i. Insert a 1 at that position and 0’s in all boxes above
it which are in the same column. Also, insert 1’s into all undetermined
boxes below p. (Note that we know that all nonzero boxes below position
p must also be 1’s because otherwise, if there were some 0 below the 1 then
everything to its left would have to be a 0 also, implying that we had a

relative fixed point in 7.) Reduce 7 by removing the column ?’) from

the biword for 7. Go to step 1.

It is clear from this construction that our resulting tableau 7,* will be a permu-
tation tableau. And it is easy to check that the map described above is indeed the
inverse of ®. O

Example 5. Let 7 = 514263. Since 7 is in Sg and has three weak excedances and
ag # 6, our permutation tableau 7,* will be contained in a 3 x 3 rectangle (the
resulting tableau is shown in Figure 5). As in step 0, we want to first compute
the shape of the associated partition. Since 1,3,5 are the wexbottoms, and 2,4, 6
are the non-wexbottoms, this uniquely determines a path (the partition path) from
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FI1GURE 5. The permutation tableau for 7 = 514263

the northeast corner of the rectangle to the southwest corner of the rectangle with
vertical steps in positions 1, 3, 5 and horizontal steps in positions 2,4, 6. That is, our
partition has the shape (3,2, 1). We now draw this partition, labeling the edges of its
southeast border accordingly with the numbers 1,...,6, and set 7 = (5,1,4,2,6, 3).
Going to step 1, we see that 7 has no relative fixed points.
Going to step 2, the fact that 2 — 1 in 7 implies that the rightmost column
(which consists of a single box) contains a 1 in the top row. We now reduce the
514263 5426 3)
123456 13456)°
Going back to step 1, we see that there are no relative fixed points in 7.
Going to step 2, since 4 — 2 in 7 it is clear that the highest box in the column
indexed by 4 must contain a 1. All undetermined boxes below this 1 must contain

permutation 7 = by removing (2, 1), obtaining 7 = <

1’s also. We now reduce the permutation 7 = (?gigg) by removing 4 — 2,
. 5463
obtaining m = (1 35 6> .

Going back to step 1, we now see that 7« has the relative fixed point (3,4).
Therefore the undetermined part of the row corresponding to 3 consists of zeros.

. 5463 L 563
Now we reduce the permutation 7 = (1 35 6)’ obtaining 7 = (1 5 6) .

Going to step 2, since 6 — 3 in 7 the top box in the column corresponding to
6 has a 1. All undetermined boxes below that contain 1’s. We have now filled in
all columns of the tableau obtaining the permutation tableau in Figure 5 so we
are done.

3. HOw & TRANSLATES STATISTICS

The six permutation statistics in the following definition will be related to the
statistics recording the numbers of 0’s, 1’s and 2’s in permutation tableaux. The
first four of these refine Postnikov’s definition of alignment [7] (see [9]); all of these
statistics were defined by Corteel [5];
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Definition 6. Given a permutation m = ajas...a,, let
App(i) = {jlj<i<a;<a;},
{ila; <a; <i<j},
{117 <aj <ai <i},
{ilai<i<j<a;},
= {jili<i<a;<a},
= {jlai<a;<i<j}

>
Z,
&5
P
I

We then set

AEE(W) = Z |AFF(Z)|

and likewise for the other five statistics.

Observe that if we draw the permutation as a chord diagram on a circle, as in
Figure 6, then j € A, (i) means that the chords starting at i and j do not intersect
and roughly “point in the same direction”; we will say that this is an alignment of
type Ayi. And if j € C,. (i) then the chords starting at 7 and j cross each other; we
will say that this is a crossing of type C,.. Note that the subscripts in our notation
refer to whether the positions ¢ and j are wexbottoms or non-wexbottoms of the
permutation. For example, in Figure 6, the chords beginning at 3 and 5 form an
alignment of type Axg, and the chords beginning at 2 and 4 form a crossing of
type Onn.

F1GURE 6. A chord diagram for the permutation 65187243

Theorem 7. Let T'(d, a, b, c) be the set of permutation tableauz with d rows, (n—d)
columns, a 0’s, b 1’s and ¢ 2’s. Let M (d, a,b,c) be the set of all permutations € S,
with
d = wex(m),
a = AF;F(’IT) + ANN(’IT) + AEN(W);
b= CF)F(’]T) + CNN(TF),
e ¢ = Ang(7).
Then |T(d,a,b,c)| = |M(d,a,b,c)|.

To prove the above result, we will show that ® is a bijection from T'(d, a, b, ¢) to
M(d,a,b,c). The structure of the argument is as follows:



8 EINAR STEINGRIMSSON AND LAUREN K. WILLIAMS

e First we prove, in Proposition 8, that under @, the ¢ 2's in 7,* correspond
to exactly ¢ alignments of type ANg in 7.

e Second, in Proposition 9, we prove that Cgg(7)+Cnn (7) equals the number
of black vertices in the diagram D. This implies that Cgg(7r) + Cyn(7) =
b—(n—k).

e We complete the proof with the following argument. Let m = Agg(7) +
Ann(7)+Agn (7). We know that a+b+c = k(n—k). Corteel [5] proved that
A}:‘F)(’]T) +ANN(7T) +AF;N(7T) +AN}:;(7T) +CF)F‘(7T) +CNN(7T) = (k— 1)(n—k)
Therefore m+c+b—(n—k) = (k—1)(n—k), which implies that m+c¢+b =
k(n — k) =a+ b+ ¢, and hence m = a.

Proposition 8. If ®(7.%) = 7 then the number of 2’s in T,* is equal to the number
of alignments of type ANg in 7.

Proof. Recall that if 7 = ®(7,F) then the wexbottoms and the non-wexbottoms
of 7 correspond to the labels of the vertical and horizontal steps, respectively, in
the south east border of the partition underlying 7,*. Note that the position of
every 2 in T,* can be given by specifying the label of the edge above it and the edge
to its left. The label i of the edge above it will be a non-wexbottom, and the label
j > i of the edge to its left will be a weak excedance bottom. Since 7 > i, and j
is a wexbottom, and i is a non-wexbottom, the pair (7, j) is precisely an alignment
of type Axg. Conversely, any alignment of type Ang is a pair (i, /) where i < j,
and 7 is a non-wexbottom, and j is a wexbottom. This implies that i is the label of
a horizontal step, and j is the label of a vertical step. The fact that ¢ < j implies
that the box of the tableau indexed as above by 7 and j contains a 2. O

Proposition 9. Under the bijection ®, there is a one-to-one correspondence be-
tween black vertices in the diagram of the permutation tableau, and crossings of
types Cgr and Cnn in the permutation.

Proof. Recall that black vertices correspond to those 1’s in a tableau that are not
topmost in their columns. Let D be the diagram of T, and let 7 = (a4, ...,a,) be
®(7,%). We will construct a map ¢ (induced by ®) which takes each crossing (i, j)
(where i < j) of type Cgg or Cny in 7 to a black vertex d in D, and show that this
is a bijection. The map ¢ is defined as follows. Let (i,5) be a crossing of type Cgg
or Cyn. We claim that the paths (i = a;) and (j — a;) intersect in a unique edge.
If that edge is horizontal, then let d be the left vertex of the edge. If that edge is
vertical, then let d be the bottom vertex of the edge.

First we need to show that the paths (i — a;) and (j — a;) intersect in an edge.
We will prove this when (i, j) is a crossing of type Cgg; the proof for Cyy is similar.
Since ¢ < j and a; < aj, it is clear that the paths must cross each other at least
once.

Consider the first point  at which the path (j — a;) intersects the path (i = a;).
We will show that the intersection here will contain an edge. Clearly this intersec-
tion must be in the zig-zag portion of the path (i — a;). If we let dy,ds, ..., d; be
the sequence of vertices encountered by the path (i — a;) in its zig-zag portion,
then, by construction of that path, there are no vertices in the diagram D between
any d, and d,41. Note that if the path (j — a;) intersects the path (i — a;) in
only the point z (rather than an edge containing z), then it is easy to see using
condition (2) in the definition of permutation tableaux that 2 must actually be a
vertex in D, located between some d, and d, ;. This is a contradiction.
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Next, we show that the paths (i — a;) and (j — a;) intersect in a unique edge.
If the two paths were to intersect a second time (and they may indeed intersect
again in a vertez), then this intersection must take place in the zig-zag portion of
both paths. Such a point e of intersection must be approached via a south step by
(i = a;) and must be approached via an east step by (j — a@;). But then, according
to the procedure defining ®, the path (i — a;) will immediately turn east, and the
path (j — a;) will immediately turn south. Therefore this intersection is not an
edge intersection.

We have thus shown that ® induces a well-defined map from crossings to black
vertices. We will now show that this map is a bijection by constructing its inverse.
Namely, to each black vertex in D we need to produce a crossing of type Cgg or
Cnn- We do this as follows. Given a black vertex d, there is a path (i — a;) on D
which enters d by going south, and then leaves d going east. (It is easy to see that
such a path exists by tracing backwards through the algorithm that defined the
map P.)

If the path (i — a;) is an excedance, then consider the unique path (j — a;)
which enters d traveling west. This path must be a weak excedance, as it is only the
paths of weak excedances which contain steps to the west. Moreover, (i,7) must
form a crossing of type Cgg, since the two paths intersect in an edge (and we have
seen that two paths which are both weak excedances may not intersect in an edge
more than once).

On the other hand, if the path (i — a;) is a non-excedance, then consider the
unique path (j — a;) which enters d traveling north. Clearly this path must be
a non-excedance, as it is only the paths of non-excedances which contain steps
north. Moreover, (7, j) must form a crossing of type Cnn, since the two paths must
intersect in a unique edge.

Therefore ¢ is a bijection between the set of Cgg- and Cny-crossings in , and
the set of black vertices in D. O

This completes the proof of Theorem 7.

4. PERMUTATION PATTERNS

In this section we introduce necessary terminology and definitions that will be
used in the next section, where we construct a bijection ¥ : §,, — S,,. This
bijection proves the equidistribution of certain linear combinations of the statis-
tics in Definition 6 (alignments and crossings) with certain linear combinations of
generalized permutation patterns, which we define below. The composition of ¥
and the bijection ® from Section 2 then proves the equidistribution of our tableaux
statistics (numbers of 0’s, 1’s and 2’s) with the pattern statistics to be defined here.

A classical permutation pattern p = p1ps .. .py is simply a permutation, and an
occurrence of p in a permutation 7 = ajas...a, is a subsequence a;,,a;,,- .., a;,
of m (where i; < is < --- < ij) whose letters are in the same relative order as in p.
For example, the permutation 416235 has two occurrences of the pattern (2-3-1),
namely the subsequences 462 and 463.

In the literature, the pattern (2-3-1) is usually denoted simply by 231. We
write it here with dashes between consecutive letters in order to emphasize that
there are no restrictions on the distance between the letters in a permutation that
form an occurrence of the pattern. A generalized pattern is a pattern where some
pairs of adjacent letters may lack a dash between them. Such an absence indicates
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that the corresponding letters must be adjacent in an occurrence of the pattern
in a permutation. For example, the pattern (2-31) occurs only once in 416235,
namely as 462. In the subsequence 463, whose letters are in the same relative order
as those of (2-31), the last two letters are not adjacent in 416235 as required for
an occurrence of (2—-31).

The reason for writing patterns in parentheses is that we will consider them as
functions from the set of permutations to the natural numbers, where the value of
a pattern p on a permutation m is the number of different occurrences of p in 7.
For example, if 7 = 416235, as above, then (2-3-1)7r = 2 and (2-31)7 = 1.

It is easy to see that there are exactly twelve different patterns of length 3 with
one dash. Six of these will be considered here, namely (1-32), (2-31), (3-21),
(21-3), (31-2) and (32-1). These are all the patterns of length 3 with one dash
whose two letters not separated by a dash are in decreasing order.

A descent in a permutation 7 = ajas...a, is an i such that a; > a;41. We
say that a; is a descent top and a;+1 a descent bottom. The set of descent tops is
denoted DESTOPSET, and the set of descent bottoms DESBOTSET. Moreover, we let
DESTOPSUM be the sum of the elements of DESTOPSET, and likewise for DESBOTSUM.

We now define the linear combinations of patterns whose joint distribution on
permutations matches the distribution of 0’s, 1’s and 2’s on permutation tableaux.

Definition 10. Given a permutation 7, let

a(r) = (21-3)7+ (3-21)w + (31-2)w — (de; 7r> :
b(r) = (2-30)m+n—1—desT,
er) = (1-32)7+ (32-1)7 — (de2s 7r>.

It is important to note that since we will be considering the quadruple statistic
consisting of a, b, ¢ and the number of descents, the terms (de; ™ andn—1—desT
in the above definition only effect a shift, by a constant, of the statistics involved,
but not an essential modification.

It is also important to note that the sum (1-32)7 + (32-1)x in ¢ is equal
to DESBOTSUM T — desw. Namely, for each descent ...yx ... in 7, the pattern
(1-32) counts the letters to the left of the descent that are smaller than its descent
bottom (x). The letters to the right of the descent, and smaller than z, are counted
by (32-1), so clearly we are counting all letters in 7w that are smaller than x.
Analogously, the sum (21-3)7 + (3-21)7 in a equals the sum of n — ¢ over all
descent tops t in 7.

This leaves (31-2) in a, which sums the left embracing numbers in 7, so called
because (31-2) counts, for each letter = in 7, the descents to the left of z: that em-
brace z, that is, where the letters of the descent are larger and smaller, respectively,
than x. Analogously, the pattern (2-31) in b sums the right embracing numbers
in 7.

To be more precise, we define the right embracing number of each letter £ in m,
denoted REMBR(¥), as the number of descents ...yz ... to the right of £ in 7 such
that z < £ < y.
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Lemma 11. Let des be the number of descents in a permutation 7, and let a(r),
b(m) and ¢(m) be as above. Then

a(m) + b(w) + ¢(7) = (des +1)(n — des —1).

Proof. Each of the patterns involved in a + b + ¢ counts certain letters to the left
or to the right of each descent in 7. Together they count, for each descent in 7, all
the letters in 7 not belonging to the descent itself. There are, of course, n — 2 such
letters for each descent. Thus, the sum of all the patterns in a(w) + b(xw) + ¢(7) is
des-(n — 2). Completing the proof now only requires a routine calculation. O

5. ANOTHER BIJECTION

We now describe the construction of a bijection ¥ : S, — §,, that takes a
permutation w to a permutation 7 such that the set of descent tops in 7 determines
the set of weak excedance tops in 7 and the set of descent bottoms in 7 determines
the set of weak excedance bottoms in 7. Moreover, the right embracing number
of i in ™ becomes Cgg(i) in 7 if 7 is a wexbottom in 7 and becomes Cnn(i) in 7
otherwise.

Recall the biword notation for permutations. For example, we write the permu-
tation 31524 as

31524
12345)°
fl
In order to construct ¥(m) (where m € S,), we first construct two biwords, (f)
g fg
and <'q)’ and then form the biword 7/ = ( 7 q) by concatenating f and g, and

f' and ¢', respectively. The words f, f', g, g' are defined as follows (we will prove
later, in Theorem 12, that this is possible):

e The letters of f consist of the set obtained by adding 1 to each of the
descent bottoms in 7 and then adjoining the letter 1. The letters of f are
ordered increasingly.

e The letters of g consist of the set obtained from the non-descent, bottoms
in 7w by removing the letter n and adding 1 to the remaining letters. The
letters of g are ordered increasingly.

e The letters of f' consist of the set obtained by subtracting 1 from each of
the descent tops of m and then adjoining the letter n. The letters of f’ are
ordered so that, for a in f', Cgg(a) in 7 is the right embracing number of
a in 7. (Observe that Cggr(a) only depends on the relative order of the
wextops in 7, together with their corresponding wexbottoms.)

e The letters of ¢’ consist of the set obtained by removing 1 from the set
of non-descent tops in 7 and then subtracting 1 from the remaining let-
ters. The letters of g’ are ordered so that, for a in g, Cxn(a) is the right
embracing number of a in 7.

Rearranging the columns of 7, so that the bottom row is in increasing order, we
obtain the permutation 7 = ¥(7) as the top row of the rearranged biword. Before

we prove that this can always be done in the way described, we give an example.
Let m = 215896374. Then 7 has
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Descent bottoms: 1 3 4 6 Non-descent bottoms: 2 5 7 8 9

Descent tops: 26729 Non-Descent tops: 13458

The right embracing numbers are 2 for 5, 1 for 6 and 8, and 0 for all others:

21-5-8-963-74
21 1

We construct a permutation with the corresponding wexbottoms and wextops,
and the corresponding nonzero values for Cgg and Cny, that is, with Cgg(5) = 2
and Cyn(6) = Cnn(8) = 1. First, the wexbottoms are obtained by adding 1 to each
descent bottom, and adjoining 1, which is always a wexbottom. The wextops are
obtained by subtracting 1 from the descent tops, and adjoining n, which is always
a wextop. Thus, we get

Wexbottoms: (1) 2 45 7 Non-wexbots: 3 6 8 9

Wextops: 1568 (9 Non-wextops: 2 3 4 7

We construct the permutation in two parts, one for the weak excedances, the other
for the non-weak excedances.

Now, the definitions of Cgp and Cnn are such that Cgg only applies to pairs of
weak excedances, and Cnyn only to pairs of non-weak excedances. We first construct
the weak excedance part of the permutation, by deciding where to place each of
the wextops, in the places given by the wexbots:

We start from the right, in place 7, which has a 0 associated to it (since REMBR(7) =
0 in w). We need to put there the smallest number among the wextops that is at
least as large as 7 (otherwise, Cgg(7) would exceed 0 in the resulting permutation).
This is the number 8:

This leaves the wextops 1, 5, 6, 9. The next place, 5, has a 2 associated to it
(since REMBR(5) = 2 in ), so we have to put there a wextop that it is bigger than
exactly two of the remaining wextops that are at least as big as 5. This forces us
to make this 9 (and the two remaining wextops between 5 and 9 in size are 5 and
6).

We continue in this way until we have placed all the wextops, in such a way that
the values of Cgg for the remaining places are 0, since 5 is the only letter among
the wexbottoms here with a nonzero right embracing number in 7:

The non-wex part is done in a similar way, but starting from the left, and we
get:

2347
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Observe that Cyn(6) = Cyn(8) = 1 and Cyn(3) = Cnn(9) = 0, as required.
Concatenating these two biwords, and sorting the columns to get the bottom row
in increasing order, the permutation we obtain is ¥(215896374) = 162593847.

We now prove that the above procedure can always be carried out in the way
described.

Theorem 12. Let DB'(w) be the set obtained from DESBOTSET(w) by adding 1 to
each of its elements, and adjoining the letter 1.

Let 1'(7) be the set obtained from DESTOPSET(7) by subtracting 1 from each of
its elements, and adjoining the letter n.

For a permutation T let WB(T) be the set of weak excedance bottoms of T and let
WT(T) be the set of weak excedance tops of T.

The map ¥ described above is well defined, and has the following properties,
where T = ¥(7):

(i) wa(r) = pB'(),
(ii) wr(r) = p1'(7),
(i) Cegr(7) + CxN(T) = REMBR(T).

Moreover, ¥ is a bijection.

Proof. Recall that Cgg (i) = 0 unless i is an excedance bottom, and that Cyn (i) = 0
unless ¢ is a non-excedance bottom.

Let the letters of WB(7) be by,ba,...,bs, ordered so that by < --- < by < by.
Look at the largest letter in WB(7), that is, b;. Suppose the embracing number of
b1 in 7 is e;. Then there are at least e; descent tops in 7 that are larger than b;.
Thus, by the construction of wWr(7) from the descent top set of m, there are at least
e1+1 elements z in wr(7) such that by < z. So, we can find an element ¢; in WT(7)
such that wr(r) contains precisely e; elements z satisfying by < z < #;. Setting
7(by) = t; guarantees that Cgg(h1) = e in 7.

Look next at bs, the second largest element in WB(7). Suppose its embracing
number in 7 is e5. There are then at least es + 1 elements x in WT(7) such that
by < x. However, one of these elements is ¢, which has already been placed to
the right of place by in 7, and so t; cannot contribute to Cgg(b) in 7. But, by + 1
is a descent bottom in 7 and so its corresponding descent top, d, must be larger
than b; + 1 and hence larger than bs. Thus, by cannot be embraced by the descent
...d(by +1)...1in 7. Hence, the embracing number of b, in 7 can be at most one
less than the number of elements x in WT(7) satisfying by < z. We can therefore
find an element ty # t; in WT(7) such that precisely e, of the elements x in wT(7)
apart from £ satisfy by < z < ts.

An analogous argument shows that the embracing number of b; in 7 can be at
most N + 1 — 4, where N is the number of elements z in wT(7) with b; < z. We
can thus place each of the elements t; of WT(7) in 7 so that Cggr(b;) in 7 equals
REMBR(D;) in 7.

In particular, each placement according to the above algorithm will result in the
creation of a weak excedance. Namely, clearly the k-th largest wexbottom is smaller
than or equal to the k-th largest wextop. Thus, by induction, since we consider
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the wexbots in decreasing order, the largest wextop unused at each stage of the
algorithm is greater than or equal to the wexbottom being considered.

To construct the subword of 7 consisting of non-wextops, we proceed in a similar
way, except that we start from the smallest non-wexbottom. At each stage, for the
non-wexbottom b; we find a non-wextop d that satisfies d < = < b; for precisely
e elements 2 among the remaining non-wextops, where e = REMBR(b;) in 7. The
argument showing that this is always possible, and that each placement results in a
non-weak excedance, is analogous to the case of the weak excedance subword, and
is omitted.

To prove that ¥ is a bijection, it suffices to show that it is injective, since it is
a map from S, to itself. Let o; and o2 be two permutations with (o) = ¥(02).
From the definition of ¥ it is clear that oy and o5 must have the same descent tops
and descent bottoms and also the same right embracing numbers for each letter. It
follows from the proof of Theorem 4 in [2, p. 249] that a permutation is uniquely
determined by its sets of descent bottoms and tops, respectively, together with the
right embracing numbers of its letters. Thus, we must have o1 = 0.

In fact, the proof of Theorem 4 in [2] can be applied directly to our situation
with trivial modifications, and yields a description of the inverse of W. O

Recall that WEXBOTSUM(7) is the sum of all the wexbottoms in . The following
corollary of Theorem 12 requires only straightforward calculations.

Corollary 13.

WEXTOPSUM () = DESTOPSUMT + n — des,
WEXBOTSUM ¥(7r) = DESBOTSUMT + des7 + 1.
We will use the following two lemmas, the first one proved by Corteel [5], in our

proofs of the equidistribution results between our tableaux statistics and permuta-
tion statistics.

Lemma 14 (Corteel [5]). Let wex, Agg, ANN, Aen, AN, Cer, Cnn be as above.
Then

Agg + Axn + Agn + Ang + Crr + Ony = (wex 71)(71, — wex).

Lemma 15.

(1) Apn = (Z) - (n 2wex> + wex — WEXTOPSUM,
(2) AN = WEXBOTSUM(W;X).

Proof. Equation (1) is equivalent to

n n — wex
ArN + WEXTOPSUM — wex = <2> _ ( ) )

We will show that the sum in the left-hand-side above counts all pairs (i, 7), with
1 <i < j < n, except those for which neither of i and j is a weak excedance.
Recall that Agn counts the pairs (4, j) such that j < a; < a; < i. Each such pair
can be described as consisting of a wextop w in the permutation, and a non-wextop
that is larger than w and to the right of w.
We can interpret (WEXTOPSUM — wex) as the sum, over all wextops, of the size
of the wextop, minus 1. Counting this for each wextop w can be done by counting
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all the letters in the permutation that are strictly smaller than w. Doing this for all
wextops is equivalent to counting all pairs of letters in the permutation that either
consist of two wextops, or a wextop and a non-wextop, where the wextop is the
larger of the two.

Therefore Agny and (WEXTOPSUM — wex) together count all pairs of letters in
the permutation, ezcept those consisting of two non-wextops. (Observe that it is
impossible to have a non-wextop z and a wextop w such that z is left of w and
z > w.) The total number of pairs of letters in a permutation in S, is of course
(”), and the number of pairs of non-wexbots is (”7“’“)7 which completes the proof.

2 2
Equation 2 can be proved in a similar manner. O

We can now prove the main results about the equidistribution implied by the
bijection W.

Theorem 16. Let 0 = U(w). We have

(3) desm = wexo — 1,

(4) (31-2)1 = Appo + Axno,
(5) (21-3)7 + (3-21)7 — <de; ”) = Apno,

(6) (2-31)1 = Cgro + Cxno,
(7) (1-32)7 + (32- 1) — <de; ”) = Ango.

Proof. Equations (3) and (6) follow directly from Theorem 12, since (2—31)7 is the
sum of the right embracing numbers for all the letters in 7. We will prove (5) here;
the proof of (7) is analogous and is omitted. Having done this, Equation (4) follows
from the other four identites in the present theorem, together with Lemmas 14
and 11 and routine calculations.

To prove Equation (5), observe that

(21-3)7 + (3-21)7 = n - des™ — DESTOPSUM .

This is because (21-3)7 4+ (3-21)7 counts the letters in 7 larger than the descent
top b for each descent ...ba...in 7. According to Corollary 13, the right-hand-side
in the equation above can be rewritten as follows:

n - desm™ — DESTOPSUM = n - desm™ — WEXTOPSUM o + n — des 7.

By Lemma 15, this is equal to

n-desm + <AEN0 — wexo — (Z) + <n\;vex0>> +n — des,

which, in turn, is equal to

—(d 1
AENU+n-des7r—(des7r—|—l)—(Z)—l—(n (e2's7r—|— )>+n—des7r.

des

To show that this last expression is equal to Agno + ( 2

) is straightforward. O
Note that Equations (4) and (5) together imply that

des
(31-2)7 + (21-3)7 + (3-21)7 — ( ;q> = Appo + Axno + Agxo.

This, together with Theorem 7, leads to the following corollary.
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Corollary 17. Let T(d,a,b,c) be the set of permutation tableauz with d + 1 rows
and (n — d — 1) columns, which are filled with precisely a 0’s, b 1’s and ¢ 2’s. Let
P(d,a,b,c) be the set of all permutations = € S, such that
e d = des(n),
a=[(31-2) + (21-3) + (3-21)] 7 — ("$7),
e b=(2-3)nr+n—1—desm,
c=[(1-32) + (32-1)]7 — ("47).
Then |T(d,a,b,c)| = |P(d,a,b,c)|.

6. ENUMERATION RESULTS

One nice application of permutation tableaux is that they facilitate enumera-
tion of permutations according to various statistics. This is because permutation
tableaux satisfy a rather simple recurrence, which we now explain.

Fix a partition A = (A1,..., Ag). Let F)\(p,q) be the polynomial in p and ¢ such
that the coefficient of p*¢® is the number of valid fillings of the Young diagram Yy
which contain s 0’s and ¢ 1’s. As Figure 7 illustrates, there is a simple recurrence
for Fx(p,q).

Explicitly, any valid filling of X is obtained in one of the following ways:

e inserting a column whose bottom entry is 1 and whose other entries are 0
after the (A, — 1)st column of a valid filling of (A — 1, o — 1,..., Ax — 1);

e adding a 1 to the end of the bottom row of a valid filling of the shape
()\1,)\2, .- .,)\kfl,)\k - ].);

e adding an all-zero row of length A\;_; to a valid filling of (Ay,..., A\p_1).

3

Thus, we have the following recurrence.
Proposition 18.

F)‘(pj q) - pki]qF()“7]’>‘27]7"'!>‘k*])(p’ Q) + qF()\ly)\27...;)\k—17)\k*])(p7 Q)
+ P Fay ) (0:9)-

or or *

00

*
*
Flooo
*
*
Hx— i

FIGURE 7. Recurrence for Fy(p, q)

It is straightforward to compute Fy(p,q) when k (the number of rows of \) is
small. Here are the first two formulas.

Proposition 19.

F()\l)(pa q) = q)\l .

F()\l JA2) (pa q) = 7q)\1 7]p)\2+] + q)ﬂ ! [2]212(]+] :

In the above expression, [2], 4 is the p, g-analog of 2. Recall that the p, g-analog
of the number n is p" 1 + p"2q+p" 3¢*> + - + ¢" !, denoted [n], .

Let Dy n(p,q,7) == 3, Fx(p,q)r*=#~IAwhere X\ ranges over all partitions
contained in a k x (n — k) rectangle. By Theorem 7, Dy ,(p,q,r) enumerates
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permutations according to the number of weak excedances, several kinds of align-
ments, and crossings. And by Corollary 17, D »(p, ¢, r) enumerates permutations
according to the number of descents and occurrences of various generalized pat-
terns. Therefore it would be nice to get an explicit expression for Dy, ,,(p, q,r), for
example by solving explicitly for F\(p,q) and then by summing over partitions A
contained in a k x (n — k) rectangle.

For fixed small k, it is not too difficult to compute the generating function
Dy(p,q,r,2) := Y, Din(p,q,7)2™. Here are the first few formulas. Note that
it is easy to determine what the denominator should be for Dy (p,q,r, x), but the
numerator is significantly more complicated.

Proposition 20.

x

D1(p,q7r7ﬂ?) = lqu

£U2

1 —pgz)(1 —qrz)(1 — q[2],,47)

DQ(p:q7r7w) = (

D3(p:q7r7w) =
2} (1 + pg*x — p*ePra’® — 2p°¢Pra® — pg'ra?)
(1 —p2qz)(1 — pgra)(1 — qr2z) (1 — pq(2]p.47) (1 — qr[2]p.47) (1 — q[3],.47)

One can derive these formulas by either using the methodology outlined above
(i.e. by summing F\(p,q)), or else by translating the problem of enumerating per-
mutation tableaux into a problem about enumerating certain weighted lattice paths,
and then by enumerating these lattice paths. In order to sketch the latter method,
let us define a bad zero in a permutation tableau to be a 0 which lies directly under-
neath some 1. Note that if some column C' in a permutation tableau 7, contains
a bad zero in the rth row, then every column to the left of C' must also contain a
zero in the rth row.

In the lattice path method for enumeration of permutation tableaux, we associate
to each permutation tableau 7,* a weighted lattice path L = {L;}"_, consisting of
n steps in the plane, which must be of the following types: (1,1) (a northeast step),
(1,0) (an east step), and (1,—j), where 1 < j < k—1 (a southeast step). Each step
L; in the lattice path represents the step P; in the partition path {P;} ;. (Recall
that the partition path follows the shape of the partition Y and travels from the
northeast corner to the southwest corner of the k x (n — k) rectangle containing
T.5) The steps (1,1) in L correspond to vertical steps in the partition path, and
have weight z. A step (1,0) in L corresponds to a horizontal step in the partition
path such that the corresponding column C of 7,* does not introduce any bad zeros
(except those that were forced by bad zeros to the right of C'). Such a step has
weight p®q®r°z, where a, b, and ¢ are the numbers of 0’s, 1’s, and 2’s, respectively,
in column C. (Note that a +b+ ¢ = k.) Finally, a step (1, —7) in L corresponds to
a horizontal step in the partition path such that the corresponding column C' of 7,
introduces exactly j new bad zeros (that were not forced by bad zeros in columns to
the right of C'). As before, such a step has weight p?¢°r¢z, where a, b, and ¢ are the
numbers of 0’s, 1’s, and 2’s, respectively, in column C. Observe that the height of
any point in the lattice path L is equal to the number of boxes of the corresponding
column of 7, which can be filled with either a 0 or a 1. By associating weighted
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lattice paths to permutation tableaux in this way, we can facilitate computation of
the generating functions Dy (p, ¢, r, z) for small k.

Now we will give complete results about a certain specialization of Dy, ,,(p,q,r).
Let Ej n(q) := Dgn(1,q,1). An explicit formula for Ej, ,,(¢) was found in [9]; the
proof utilized a recurrence similar to that in Proposition 18.

Theorem 21 (Williams [9]).

Fin(g) = " ki(—l)i[’f — i ((7) T <7 ! 1)) '

i=0

The polynomials above have many nice properties. It was observed in [9] that
if one renormalizes F ,(q) by defining EA'km(q) = ¢* "B} (q), then EAk’n(q) is
a new g-analog of the Eulerian numbers (distinct from Carlitz’ classical g-analog
of the Eulerian numbers [4]). Furthermore, EAkyn(q) specializes at ¢ = —1,0,1
to the binomial coefficients, the Narayana numbers, and the Eulerian numbers.
Additionally, E‘kn(q) = EA‘nJr],k,n(q). It was shown more recently by Corteel [5]
that the polynomials Ekﬁn(q) naturally relate to the ASEP model in statistical
physics.

Table 1 lists EAkyn(q) formn =4,5,6,7.

Theorem 21 together with Corollary 17 implies the following result.

Corollary 22. The number of permutations in S, with k — 1 descents and m
occurrences of the pattern (2 — 31) is equal to the coefficient of ¢™ in

k—1
; —k? i an ki [ [TV ki n
Bt =0 S0 (e (7))

This result was first conjectured by the authors of this paper, and first proved
by Corteel [5]. The formula Ekn(q) is the first known polynomial expression which
gives the complete distribution of a permutation pattern of length greater than 2
(the two cases of length 2 correspond to the Eulerian numbers and the coefficients
of [n]!, respectively).

For the polynomials E‘kn(q) both ordinary and continued fraction generating
functions are known. It can be shown [9] that E(q,z,y) := >, , "By (q)yFan

is equal to

o0 2i+1 _ y)

Z y'(q
2 FEE (g — g o+ [ow)

Additionally, Corteel [5] used results of Clark, Steingrimsson, and Zeng [2] to
show the following:

Theorem 23 (Corteel [5]).

. 1
E(q,2,y) =

)\] 2132
A2$2

Ag:l?

1—b0$—
1*61.’1)* 5
1—b2$—
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Eralq) |1

Es 4(q) 6+ 4q + ¢°

Es 4(q) 6+ 4q + ¢*

Eqx(q) | 1

Eis(q) | 1

Eas(q) | 10+ 10 + 5¢ + ¢°

Ess(q) | 20 + 25 + 15¢% + 5¢° + ¢*

Eis(q) | 10+ 10q + 5¢* + ¢°

BEss(q) |1

Ei6(q) |1

E276(Q) 15 + 20q + 15¢° + 6¢° + ¢*

E376(Q) 50 4+ 90q + 84¢> + 50¢° + 21¢* + 6¢° + ¢°

Ey6(q) | 50 4+ 90g + 8442 + 50¢° + 21¢* + 64¢° + ¢°

E:576(Q) 15 + 20¢ + 15¢° + 6¢° + ¢*

Fe(q) | 1

Eiq(q) |1

EZ?(Q) 21 + 35¢ + 35¢° + 21¢° + 7¢* + ¢°

E37(q) | 105+ 245¢ + 308¢2 + 259¢* + 161¢* + 77¢" + 28¢° + 7¢" + ¢°
Euz(q) | 1754441+ 5880+ 532¢" + 364" + 196¢° + 84¢° + 28¢" + 7¢° + ¢°
Es7(q) | 105+ 245¢ + 308¢” + 259¢° + 161¢* + 77¢° + 28¢° + 7¢" + ¢°
Eq7(q) | 214 35¢ + 35¢° + 21¢° + 7¢* + ¢°

Em(q) 1

TABLE 1. Ej,(q)

where by, = y[n + g + [n]g, A = y[nlg, and [n]y =1+ q+ - +q"".

Finally, we remark that, up to a shift by a constant, the bistatistic counting the
number of rows and number of 0’s in permutation tableaux has the Euler-Mahonian
distribution, that is, it has the same distribution as the number of descents and
the major index for permutations (the major index is the sum of the places of the
descents in a permutation). Note first that the statistic a in Corollary 17, when
stripped of (d;S) (which is a constant when considering a fixed number of descents)

has the same distribution as the statistic

(8) (1-32) + (32-1) + (2-31).

This is because the statistic in (8) is obtained by taking the reverse complement of
the statistic (31-2)+(21-3)+(3—-21), that is, by reversing each of the patterns and
then replacing each letter i by 4 —i. Doing the same with each permutation in S,
(with 4 replaced by n + 1) is a bijection from S, to itself, and this bijection clearly
proves the equidistribution of (31-2) 4+ (21-3) + (3-21) with (1-32) + (32-1) +
(2-31), even when each statistic is taken jointly with the number of descents (which
is invariant under reverse complement). The statistic (1-32) + (32-1) + (2-31) is
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equal to the statistic MAK, as pointed out in [1], and it was shown by Foata and
Zeilberger [6] that (des, MAK) has the Euler-Mahonian distribution.'

Because the bistatistic counting number of rows and number of 0’s has the Euler-
Mahonian distribution, the specialization Dy, ,,(p, 1, 1) is essentially Carlitz’ classical
g-analog of the Eulerian numbers [4]. Therefore the polynomials Dy, ,,(p,q,r) gen-
eralize both the classical g-analog of the Eulerian numbers and the new g-analog of
the Eulerian numbers found in [9].

7. OPEN PROBLEMS

The bijections taking permutation tableaux to permutations seem to have several
properties that merit further investigation. We list a few of these, along with some
other open problems.

(1) Find an explicit expression for Dy, ,(p, q, ).

(2) We say that a 1 in a permutation tableau is essential if it is the topmost one
in its column or the leftmost 1 in its row. A tableau is determined by its
essential 1’s: all the other 1’s are determined by these, because of condition
(2) in the definition of a permutation tableau. What do the essential 1’s
correspond to in the corresponding permutation?

We conjecture that the distribution of permutation tableau according to
the number of essential 1’s is equal to that for number of cycles in per-
mutations. This distribution is the same as that for Left-to-Right minima.
Moreover, we conjecture that the joint distribution of tableaux according to
the number of rows and the number of essential 1’s equals that of permuta-
tions according to descents and Left-to-Right-minima. That bistatistic, in
turn, has the same distribution as the number of weak excedances and the
number of cycles of a permutation, when written in standard cycle form.

(3) The number of 0’s in a tableau corresponds to the total number of occur-
rences of the patterns (3-21), (21-3) and (31-2). It is easy to see that
these patterns have the same distributions as (1-32), (32—1) and (2-31),
respectively. To prove this, simply reverse each permutation in S,,. Can we
partition the 0’s in a tableau into two sets, one corresponding to occurrences
of (3-21) 4+ (21-3) and the other to occurrences of (31-2)? Observe that
the first one of these sets would correspond to descent tops and the second
one to left embracings. Thus, these sets would be symmetric counterparts
of 2’s and 1’s respectively, although this symmetry is not transparent in
the tableaux.

(4) The reflection of a permutation tableau 7,F in its north-east/south-west
diagonal yields a permutation tableau if and only if 7, has a 1 in each row.
That is equivalent to the associated permutation being fixed point free.
Which permutation is associated to the reflected tableau (that tableau is
also fixed point free because it has a 1 in each row)?

(5) A permutation tableau T' must have at least one 1 in each column. If it
has only this minimum number of 1’s, then the corresponding permutation,
that is, ¥~1(®(T)), has no occurrences of the pattern (2-31). Tt has been

T Actually, the statistic (1-32) + (32-1) + (2-31) is a slight variation on mak, as defined by
Foata and Zeilberger, but is easily seen to have the same distribution when taken together with

the number of descents. Foata and Zeilberger’s mak is actually equal to the statistic called mAkL
in [1, Table 1]
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shown (see [3]), that permutations avoiding this pattern are enumerated by

the Catalan numbers. Is there a bijection from these tableaux to any of the

well known objects enumerated by Catalan numbers, such as Dyck paths?
(6) Find a better description of the bijection W.
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