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Abstract

A polynomial in two variables is defined by Cy,(x,t) = 3 . X(Gr, ) 7l where 11,
is the lattice of partitions of the set {1,2,...,n}, G, is a certain interval graph defined
in terms of the partition 7, x(Gr,x) is the chromatic polynomial of Gr and |r| is the
number of blocks in . It is shown that Cy(z,t) = Y. 0_ot* 32k (Z:]i)S(n, i)(z);, where
S(n,1) is the Stirling number of the second kind and (z); = z(z = 1)+ (z —i+1). Asa
special case, Cy(—1,—t) = A,(t), where A, (t) is the n-th Eulerian polynomial. Moreover,
An(t) =2 rem, Or 17l where a, is the number of acyclic orientations of G.

On définit un polynéme en deux variables par Cy(z,t) =3 cm, X(Gr, ) At od 11,
est le treillis des partitions de U'ensemble {1,2,...,n}, G, est un certain graphe défini en
termes de la partition v, x(Gr,x) est le polynéme chromatique de G et |r| est le nom-
bre de blocs de w. On montre que Cp(z,t) = Sp_ot* S8 0 ("71)S(n, i) (z); ot S(n,1)
est le nombre de Stirling de deuriéme espéce et (z); = z(z —1)---(z — i+ 1). En
particulier, Cp(—1,—t) = A,(t), ou A,(t) est le n-ieme polynéme eulérien. De plus,
An(t) = rem, O 71, ot a, est le nombre d’orientations acycliques de G,

1 Introduction

The Eulerian polynomials A, (t) (for n = 0,1,2,...), which can be defined by

A
> k" :ﬁv

k>0

are ubiquitous in enumerative combinatorics and make frequent appearances in other
branches of mathematics as well. The best known interpretation of the coefficients
of A,(t) is perhaps the one which says that the i-th coefficient counts the number
of permutations of [n] := {1,2,...,n} with i — 1 descents, i.e. the number of
permutations ajas - - - a,, such that a; > a;41 for exactly ¢ — 1 values of j.

Another much studied statistic is the Stirling number of the second kind, S(n, k),
which counts the number of partitions of an n—element set into k& blocks.

In this paper we construct a link between these two statistics by establishing a
bijection between the set of permutations with & descents and the set of pairs (7, A;)
where 7 is a partition of [r] into n — k blocks and A, is an acyclic orientation of a
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certain graph G, determined by 7. We thus get a polynomial Z ar - U™ where a,
mell,
is the number of acyclic orientations of G, |w| the number of blocks of 7 and TI,, is

the lattice of partitions of [r], and this polynomial equals A, ().
We then generalize this polynomial by replacing a, by x(Gr, ), the chromatic

polynomial of Gr. The resulting polynomial, which we call C,,(z, t), satisfies C,,(—1, —t)

A, (), which is shown using a theorem of Stanley [11] on the number of acyclic ori-
entations of graphs. Cy,(z,t) can be expressed in terms of Stirling numbers of the
n k :
n—1 . . .
second kind, namely C,(z,1) = Z tk Z < k’) S(n,1)(z);, where (z); is the falling
k=0 i=0 \* —
factorial defined by (z); = z(z — 1)(z —2)--- (z —1 + 1).

Lastly, we refine C,,(z,t) by restricting it to partitions of a given type. The type
of a partition 7 of [n] is the partition of the integer n whose parts are the sizes of
the blocks of m. This polynomial, called C\(z), when evaluated at = = —1, gives
a refinement of the Eulerian numbers, but is itself refined by the previously known
statistic counting permutations by descent set. The descent set of a permutation
p=ajay---a,is D(p) = {1 | a; > ai1}, i.e. the set of indices at which the descents
of p occur. We show that C\(z) can be expressed in terms of those partitions of n
which are refined by A, i.e. those partitions which can be obtained from A by adding
some of its parts.

2 The link between partitions and permutations

A partition w of [n] (or any set) is a collection { By, Bz, ..., B, } of nonempty subsets
of [n] such that B;NB; = () for all © # j and such that |J; B; = [n]. The B;’s are called
the blocks of m and the size of B; is its number of elements. We call = a k—partition
if it has k& blocks and write |7| for the number of blocks in w. We will frequently
represent a partition by writing the elements of each block in decreasing order and
separating the blocks by dashes. For example, 531-2-94-876 is a 4-partition of [9].

Given a permutation p = ayay---a, in the symmetric group S, we define its
descent blocks to be the maximal decreasing contiguous subwords of p. For example,
the descent blocks of 641573982 are 641, 5, 73 and 982, or 641-5-73-982 in our

partition notation.

Each descent block of p € S, of size k has & — 1 descents and, since there are no
descents between two descent blocks, the total number of descents in p, d(p), equals
the sum of the block sizes minus the number of descent blocks, i.e. d(p) =n — #p,
where #p is the number of descent blocks in p.

Thus, every permutation p with & descents has n — k descent blocks and hence
defines an (n — k)-partition of [d], but two different permutations can define the
same partition, such as 3241 and 4132, whose descent blocks are 32-41. However,
given a partition 7 of [d], it is easy to determine which permutations have descent
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blocks corresponding to w. Namely, if we write each block of 7 in decreasing order,
then every ordering of these blocks such that no descent occurs between two blocks
gives a permutation whose descent blocks correspond to m. As an example, given
the partition 7 = 52-4-31, we get four different permutations, namely 31452, 31524,
45231 and 52314. The two remaining permutations arising from these blocks, 43152
and 52431, have descents between the original blocks and thus don’t have descent
blocks corresponding to .

From now on, we assume that the elements of each block in a partition 7 of [n]
are ordered decreasingly, and when we refer to a permutation in §,, obtained from an
ordering of the blocks of m, we mean the permutation obtained by concatenating the
blocks of m in the prescribed order. Also, call an ordering of the blocks descent—free
if no descent occurs between blocks. For example, 21,43 is a descent—free ordering

of the blocks 21-43, whereas 43,21 is not.

Let r(m) denote the number of descent—free orderings of the blocks of a k-
partition 7 of [n] (e.g. r(52-4-31) = 4). Then, since each of the r(7) permutations
generated in this way has n — k = n — |7| descents, and since every permutation in
S, with n — k descents is uniquely generated in this way, we see that

An(t) = 3 r(m) - 177, (1)
well,
where 11, is the set of all partitions of [r]. By symmetry of A,(¢), we also have the
more appealing formula

Aty =3 r(m) -1, (2)

melly,

These two identies yield the following:

Corollary 1 Let TI¥ be the rank (n — k)-subsel of T,,, i.e. the sel of  in 11, such

that |m| = k. Then
Srm= ¥ ) L

nellk relpti=k

As we mentioned before, it is easy to prove the symmetry of the Eulerian poly-
nomials when their coefficients are interpreted as counting permutations by num-
ber of descents. One bijection which accomplishes this is the “reversing” map
R : aiay---a, ~— apa,_1---ay;. In the present context, however, why Corollary
1 is true is not at all clear, because the lattice II,, is not self-dual (and even that
would not suffice). It is possible, of course, to construct a bijection between the pairs
{(7,0,) | O, a descent-free ordering of the blocks in 7} for 7 € TI**'=* respectively
7 € TI*¥ by “translating” the above mentioned bijection of permutations into the
partition setup. This, however, will not result in a bijection which is “natural” with
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Figure 1: The poset determined by the partition m = 41-63-75-8-92 and the corre-
sponding incomparability graph.

respect to the structure of II,,. That is, two permutations arising from the same
partition m € II* will not necessarily be sent to permutations arising from the same
partition in TI7H1=F,

If we order the blocks of a k-partition m by their respective least elements, it is
not hard to show that r(7) = [T%, (p(¢) + 1), where p(:) is the number of blocks
which precede the i-th block and which contain a number that is larger than the
least number in the ¢-th block. However, we will derive this in a different way.

Let w € II,, be a k—partition with blocks By, Bs, ..., Bi. Define a partial ordering
on the B; by setting B; < B; if the largest element of B; is smaller than the least
element of B; (equivalently, every element of B; is smaller than each element of B;).
It follows that an arbitrary ordering of the blocks B; gives rise to a permutation p
with n — k descents if and only if the ordering of the blocks is descent-free.

This means, in the terminology of [14], Chapter 4, that r(7) is the number of
descent-free permutations (self-bijections) of the poset defined by the blocks of =,
ordered as above. We will review this briefly now.

Let P be a poset on elements zq,zg,...,z, and ¢ : P — P a bijection. We refer
to ¢ as a permutation of P and say that ¢ has a descent at @ if ¢(ziy1) < o),
where < is the ordering in P. The descent polynomial Dp(t) of P is the polynomial
whose k—th coefficient is the number of permutations ¢ with exactly k& descents. Let
Gp be the incomparability graph of P, i.e. the graph whose vertices are the elements
of P and with edges (z,y) for each pair of elements z,y € P such that z and y
are incomparable. Fig. 1 shows the poset P, corresponding to the partition 7 =
41-63-75-8-92 and the associated incomparability graph G,.

It was shown, first in [8] and later, independently, in [2] (see also [3]), and, still
later and independently, in [14], that the descent polynomial of a poset P and the
chromatic polynomial x(Gp, k) of Gp carry the same information. More precisely,

if Dp(t) =do+dit+ -+ d,_1t"" then

dp1t 4 dyot® + - - + dot”
(1 —t)ntt ’

> x(Gp k)tF =

k>0



It follows from this (see, e.g., Prop. 1.4.2 in [12]) that do, the number of permu-
tations ¢ : P — P with no descents, equals (—1)|GP| - x(Gp,—1), where |Gp| is the
number of vertices in Gp (and hence the degree of x(Gp,n)). For any graph G, in
turn, (—=1)19 x(Gp, —1) equals the number of acyclic orientations of G. This was
shown in [11], Corollary 1.3, and a bijective proof for the special case when G is an
incomparability graph was given in [14].

If 7 is a partition of [r], let G, be the incomparability graph of the poset defined

(as above) by 7 and let a, be the number of acyclic orientations of ;. We can then
rewrite equations (1) and (2) to get the following:

Theorem 2 A,(1) = Z a, - I Fquivalently, A,(t) = Z a, -, m

melly, m€Ell,

Let By, B,,... By be the blocks of a partition 7 and let a; and b; be the least
and the largest element, respectively, of B;, for each 7. Then it is easy to see that
(i is isomorphic to the interval graph defined by the intervals (on the real line, say)
[ar,bi], [ag, by, ..., [ak, by], that is, the graph whose vertices are these intervals and
where two vertices are adjacent iff their corresponding intervals have a nonempty
intersection.

The following lemma, which is easy to prove, holds in a more general context

than the one stated here, namely for all chordal (triangulated) graphs (see page 34
in [10]).

Lemma 3 Let G be an interval graph on k intervals I; = [a;,b;], labeled so that
a; < a; if v < j. For each i, let p(i) denote the number of intervals I; with j < 1
and such that I; N I; # 0. Then the chromatic polynomial of G is given by

W(Gn) = I (0 — p(i)). "

=1

Corollary 4 Let m be a k—partition with blocks By, B, ..., By, (labelled as the cor-
responding intervals in Lemma 3), let P, be the poset determined by m and let p(1)

be the number of blocks B; with j <1 and such thal B; and B; are incomparable in
k

P.. Then a, = H (p(i) +1).

=1
k

Proof: a, = (—1)I%. x (G, —1) = (=D)*T] (=1 — p(2)) = 1;[1 (p(i) + 1). |

=1

We now define a polynomial C,(z,1) in two variables, which is an obvious gen-
eralization of the polynomial 3, . an - Il in Theorem 2.
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Deﬁnition 5 Let H and G, be as before. The n-th chromatic partition polynomial
is Ch( Z x(G t|r| As a convention, Cy(z,t) = 1.
mell,

Corollary 6 C,(—1,—t) = A,(t), where A,(t) is the n-th Fulerian polynomial. L

The polynomial C,(z,t) can be expressed in a particularly nice way. Let (z);
denote the falling factorial defined by (z); = z(z —1)--- (z —1+ 1), where (z) = 1.
By definition, the chromatic polynomial of a graph G, when expanded in the basis
{(z)i}i>0, has as its coefficient to (z); the number of ways of partitioning the vertices
of (G into 1 stable sets. A set of vertices is stable if no two of its vertices are adjacent.
Recall that I is the set of partitions of [r] with k blocks.

Theorem 7 C\( Z tki (:_ ;) S(n,i)():. u

1=

The theorem can be proved by induction. However, after learning of our con-
jecture to this effect, Richard Stanley [13] found a bijective proof which we sketch
here.

Let GG be as usual. To avoid confusion, we call a partition of the vertices of G
(i.e. of the blocks of the partition m) into ¢ stable sets an i—separation of m. We

need to show that each partition 7 € T, for 0 < i < k, gives rise to (:_Z) distinct

i-separations of partitions in TI¥, and that each such i-separation of each = € TI*
arises uniquely in this way.

Given 7 € IIY, write the elements of each block of 7 in ascending order. There
are n — ¢ places between adjacent elements in blocks of 7. Pick & — 7 of these places.
This can be done in (: :) = (;L Z) ways and gives a partition = € TI¥ if we break
up each block of 7 at the places picked. The desired i—separation of 7 is obtained
by letting two blocks of m belong to the same (stable) set iff they were contained
in the same block of 7. As an example, let n =9, k =7, 1 = 3, 7 = 8431-72-965
and suppose we pick the following four places within blocks of 7, indicated by bars:
8|4|31-7|2-9|65. Then © = 8-4-31-7-2-9-65 and the desired 3-separation of 7 is
{13,4,8}, {2,7}, {56,9}.

Corollary 8 A,( Zt Z (n:;) il S(n,i).

n
k=0 =0
Thus, the Fulerian number A(n, k) which is the k-th coefficient of A,(t) satisfies
k. o .
A(n, k) = izo(—l)’“‘i (:_ ;) -115(n, ). u



Corollary 8 is equivalent to Theorem E in section 6.5 in [4]. In fact, Corollary
6 could be proved directly from Theorem 7, using this relationship between Stirling
numbers and Eulerian numbers. It seems, however, that such a proof would raise the
question answered by the bijective proof presented here. A more reasonable desire
would be to see a direct bijective proof of Theorem 2, using a bijection between the
set of permutations of [n] on one hand and the set of pairs (7, A;), where A, is an
acyclic orientation of GG, on the other. We now sketch such a bijection.

A source in a directed graph is a vertex v none of whose incident edges points
into v. In particular, an isolated vertex is a source. It is easy to see that in any
acyclic orientation of a finite graph there must be at least one source. Let 7 be
a partition of [n] with blocks By, By,..., By and suppose we are given an acyclic
orientation A, of G.. Observe that two sources in a directed graph cannot be
adjacent. Thus, if 7 is a partition, and B; and B; are two sources in an acyclic
orientation of G, then every element of B; must be smaller than each element of
B; (i.e. B; < Bj in P;), or vice versa. We now construct a permutation p of [n],
with descent blocks By, Bs, ..., By, from A, as follows: Let B; be that source of
G whose elements are smallest. Then the permutation p begins with the elements
of B;, ordered decreasingly. Now remove B; and all its incident edges from G.
Let B; be the source with the least elements in the resulting graph. Append the
elements of Bj, in decreasing order, to those of B; already placed. Continue in this
way until there is nothing left of the graph. This gives a descent—free ordering of
the blocks By, Ba, ..., Bi. Conversely, given a permutation p with descent blocks
Bi, By, ..., B, in this order, let m be the partition with blocks By, By, ..., By and
construct an acyclic orientation of G by orienting edges from B; to B; if 1 < 5. For
an example, see Figure 2.

Remark 9 The above bijection can be modified to apply to an arbitrary poset P,
thus giving a new bijective proof (simpler than that in [14], mentioned above) of the
fact that the number of descent-free permutations of P equals the number of acyclic
orientations of G'p. Namely, label the elements of P with [n] in a natural way, i.e.
so that « < j in P implies ¢ < j as integers. Given an acyclic orientation of Gp, let
the first letter of the corresponding permutation be the least label among all sources
in Gp, remove that source and repeat the process as above. Conversely, given a
descent-free permutation p of P, orient the edges of Gp from 1 to 5 if ¢ precedes j
in p.

Using Theorem 7, we get a combinatorial interpretation of another specializa-
tion of Cy,(z,t). First, we need to compute the exponential generating function

of C,(z,t), but before that, observe that C,(z,t) = ¥, S(n,1)(z); > tk(n_i) =

(1+ 1", S(n,i)(x)i (%H) Also, let S, (1) = 5 S(n,i)(x); (1), s0 Cu(z,1) =
(14 1)"Sy(z,1).
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Figure 2: An acyclic orientation of G, for m = 41-52-3-6-97-8, which corresponds
to the permutation 523416897.

n 1 4 te+t)z\ 7
Theorem 10 Z C’ :v t z (L>
n>0 1-+t

Proof: As both sides of the equation have constant term equal to 1 (when viewed
as power series in z), it suffices to prove the above identity for the logarithmic
derivative (with respect to z) of each side. This reduces the problem to proving the
identity

(1 + te(l-i—t)z) Z [(1 + t)Z]n

n>0

S (2,1) = xt(1 4 1) 0237 (40"

n>0

Sn(z,t).

n! n!

Setting v = (1 4 t)z, the above identity is equivalent to
" " n
> — Spy1(z,t) +tZ Sipr(z, )| = at > —’Z ) S, 1),

n>0 "

which, in turn, is equivalent to

Spy1(z,t) = tZ( )[J;S (x,t) — Siz1(z, 1)].
This last identity follows from the basic recurrence for the Stirling numbers of the

second kind and the identity E ( ) (t,k)=S(n+1,k+1). [ |

i=k

Corollary 11 > C(—z,— —T’L = (Z An( ) .

n>0 n>0

" 1—1
Proof: Follows from the well-known identity Z An(t)z— = —. [

= n! 1 — te(1-1)z

Thus, the coefficient to t'z* in C,(—=z, —t) is the number of permutations of [n]
with exactly + — 1 descents and exactly k lefi-to-right minima, i.e. exactly k values
of m such that a,, < a, for all £ < m (see, e.g., [5], or [6]).
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3 A refinement of C,(z,t)

We will now refine the polynomial C,,(z,t) by restricting it to partitions of a given
type. The type of a partition = with blocks By, Ba,..., By is type(m) = X =
(A1, Az, ..., Ag), where X; = #B;. By convention, we label the B; so that A; < A, <
.-+ < Xg. The length of X, denoted £(}), is the number of parts of A, i.e. £(X) = k.
Thus, type(r) is a partition of the integer n. As an example, if 7 = 531-762-4-8-9
then A = (1,1,1,3,3).

To minimize the confusion in what follows, we will always let 7 and 7 denote
partitions of the set [n] but A and p will denote partitions of the integer n.

Let I, be the poset of partitions of n, ordered by refinement, i.e. if \,u € I,
then A < p if g can be obtained from A by adding some of the parts of A together.
For example, (1,1,2,3,3) < (1,2,3,4) < (1,4,5) £ (3,7).

We wish to compute Cy\(z) := 3 x(Gr, x), where the sum is over all 7 of type A.

Evaluating this polynomial at x = —1 will yield a refinement of the Fulerian numbers
A(n, k), because we have (—1)* Z Ci(—1) = Z ar = A(n,k). On the other
((N)=k reTlk

hand, (—1)*C\(—1) is refined by the known statistic recording the distribution of
permutations in §,, by descent set. The descent set of a permutation p = ajas - - - a, 1s
D(p) = {t | a; > ait1}, i.e. the set of indices at which the descents of p occur. This
statistic, first discovered by MacMahon [9], and then rediscovered several times,
involves binomial determinants (see [7]). To see that (—1)¥C\(—=1) is refined by
the descent set statistic, observe that it equals the number of permutations whose
descent blocks constitute a partition of [n] of type A, whereas all permutations with
a given descent set give rise to partitions of the same type, since the descent set
determines the sizes of the descent blocks.

The lattice of partitions of [r], which we denote by II,, is ordered by setting

m < 7if 7 1s refined by m, that is, if each block of 7 is contained in some block of 7.
As an example, 1-52-63-4 < 1-542-63 £ 541-632. Let m be a partition with blocks
Bi, By, ..., By and type(m) = A. An i—separation of 7 defines a unique partition
7 > 7 by letting B;, U B;, U---U B, be a single block in 7 if {B;,, Bi,,..., B}

is one of the stable sets of the i—separation in question (see the proof of Theorem

119

7). In order to give a nice expression for C)(z) we need to understand how many
i—separations of partitions of a given type arise from 7.

Define f(X, u) to be the number of ways of obtaining a partition 7 of type A
from a partition 7 of type p in the way described in the proof of Theorem 7, i.e.
by picking some of the places between elements of blocks of 7 and breaking up each
block at the places picked (recall that the elements of each block are always written
in decreasing order). As an example, the block 76421 can be split into 76-4-21 and
7-642-1 (to name a few), but not 74-621.

Then the same proof as for Theorem 7 yields the following result, where #(u) is

9



the number of partitions of type p (which has a well known expression).

Theorem 12 Cy(z) = > f(A,p) - #(p) - (2)e()- [

2

Setting A = (1,1,...,1) yields the following well-known identity:

Corollary 13 Z S(n, k)(z)s = 2™

k=0

Proof: Let m be the unique partition of [r] into n blocks and A = type(r) =
(1,1,...,1). Thus, for any p, we have g > X and f(A, p) =1, so we get

2" = x(Gry ) = 3 #() - (@) = Y Sn, k) (@) |
MEIH k=0
Theorem 12 can be used to express the Fuler numbers (not to be confused with

the Eulerian numbers A(n, k)) in terms of the number of partitions of certain types.
The Euler number F, is defined as the number of alternating permutations in S,
i.e. permutations ajas---a, such that a; > ay < az > ---. A result of André [1]
states that the exponential generating function of the Euler numbers is given by
S nso Bn™/n! = tan z +secx. For n odd, they satisfy E, = (—1)®*1/24, (—1). For
even n, A,(=1) = 0, explaining why the formula only holds for odd n.

Corollary 14 Let ¢& be the number of partitions of [2n] into k blocks of even sizes.
Then

n

EZn = Z (—])n_k . k' . Cf;.

k=1

Proof: All the descent blocks of an alternating permutation in Sy, have size 2, so
such a permutation arises from a partition 7 of type A = (2,2,...,2). Conversely,
any permutation arising from a partition of type (2,2, ...,2) is alternating. If 7 > =,
where type(m) = (2,2,...,2), then every block of 7 has even size. Also, given a
block in such a 7, it can be split into linearly ordered blocks of size 2 in only one
way, i.e. f(A,p) =1, where g = type(7). The number of permutations arising from
m is given by (=1)"x(Gr,—1), so, letting A = (2,2,...,2), we get

Fy=(=1)" > x(Gry=1)=(=1)" > fhp) - # (1) - (= 1)gq) =

type(m)=2X u>A

(—1)”2761-8; (=DF k! = i(—m”—’“-k!-cﬁ. m

k=1
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It has been pointed out to the author by Ira Gessel how this result can be
obtained from generating functions. At the end of this paper, we give a combinatorial
proof of Corollary 14.

Obviously, one could generalize Corollary 14 by replacing ¢* with the correspond-
ing number of partitions of [dr] into &k blocks of sizes divisible by d, in which case the
Euler number Es, would be replaced by a generalized Euler number E2 counting
the number of permutations of [dn] with descents at positions d,2d,3d, ..., (n—1)d.

The following formula for the Euler numbers Fs,_1, similar to Corollary 14, has
been found by Sheila Sundaram [16]. Her result stems from homological properties
of the lattice II,,, studied in [15], and is likewise generalized to partitions of [dn] vs.
permutations of [dn — 1].

n

Proposition 15 (Sundaram [16]) Ey,_y = > (—=1)"7% - (k= 1)! - ¢ |
k=1

We conclude the paper with a combinatorial proof of Corollary 14 and Proposi-
tion 15. The proof easily generalizes to partitions of [dn] into blocks of sizes divisible

by d.

Note first that k! - ¢® counts the number of ordered partitions of [2n] that have
k blocks, all of even size. Each such ordered partition gives rise to a permutation
of [2n] if we concatenate the blocks in the prescribed order, writing the elements of
each block in decreasing order. Some permutations arising in this way will arise from
several different ordered partitions, e.g. 31876542, which arises from 31-876542, 31—
8765-42, 31-87-6542, and 31-87-65—42.

Clearly, each permutation p arising in this way has descent blocks of even sizes.
Moreover, p arises from precisely those ordered partitions of [2n] that can be obtained
from p by splitting p into its descent blocks and then, possibly, further splitting some
of the descent blocks. Each descent block of size 2¢ can be split at any of the (£/—1)
places between consecutive pairs of its elements. In the above example, the descent
block 876542 could be split precisely at the places indicated by bars in 87]65[42.

Given a permutation p of [2n], let S(p) = {i1,12,...,4m} be the set of all such
places in p. Thus, the set of ordered partitions of [2n] that give rise to the permu-
tation p is in one-to-one correspondence with the set of subsets of S(p). Moreover,
for each p, the cardinality of the subset is either always of the same parity as the
number of blocks in the corresponding partition or else always of the opposite parity.
But the parity of the number of blocks determines the sign with which a partition
appears in the sum in Corollary 14, so the total contribution of a permutation to

the sum is Z(—l)’(m), which equals 0 except when S(p) = 0. When S(p) = 0,
=0 [

p arises from just one ordered partition with n blocks of size 2, in which case p is

alternating.
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To prove Proposition 15, we proceed as above, except that each ordered partition
is required to begin with that block which contains 2n (as its first element). This
results in k! being replaced by (k — 1)!. Deleting 2n from the resulting alternating
permutations gives all reverse alternating permutations of [2n — 1], which are easily
seen to be equinumerous with the alternating ones.
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