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Abstract

The definitions of descent, excedance, major index, inversion index
and Denert’s statistic for the elements of the symmetric group Sd are
generalized to indexed permutations, i.e. the elements of the group
Sn
d := Zn ≀ Sd, where ≀ is wreath product with respect to the usual

action of Sd by permutations of {1, 2, . . . , d}.
It is shown, bijectively, that excedances and descents are equidis-

tributed, and the corresponding descent polynomial, analogous to the
Eulerian polynomial, is computed as the f–eulerian polynomial of a
simple polynomial. The descent polynomial is shown to equal the h–
polynomial (essentially the h–vector) of a certain triangulation of the
unit d–cube. This is proved by a bijection which exploits the fact that
the h–vector of the simplicial complex arising from the triangulation
can be computed via a shelling of the complex. The famous formula∑

d≥0Ed
xd

d! = sec x + tanx, where Ed is the number of alternating
permutations in Sd, is generalized in two different ways, one relating
to recent work of V.I. Arnold on Morse theory. The major index and
inversion index are shown to be equidistributed over Sn

d . Likewise,
the pair of statistics (d, maj) is shown to be equidistributed with the
pair (ǫ, den), where den is Denert’s statistic and ǫ is an alternative
definition of excedance. A result of Stanley, relating the number of
permutations with k descents to the volume of a certain “slice” of the
unit d–cube, is also generalized.

1 Introduction
There is a wealth of literature on various statistics of the elements of the
symmetric group Sd (see for example [9] and [12] for a bibliography) and
some of this has recently been generalized to the hyperoctahedral group Bd

(see [17]). In this paper we generalize some of these statistics to the wreath
product Zn ≀ Sd of the cyclic group on n elements by the symmetric group Sd.
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In the classical case of the symmetric group Sd, whose elements we view
as permutations of the set [d] = {1, 2, . . . , d}, represented as words, a descent
in π = a1a2 . . . ad ∈ Sd is an i in [d−1] such that ai > ai+1, i.e. where a letter
in the word π is larger than its successor. The descent set D(π) of π is the set
of those i ∈ [d − 1] for which ai > ai+1, i.e. D(π) = {i ∈ [d–1] | ai > ai+1}.
An excedance in π is an i in [d] such that ai > i and the excedance set of π is
E(π) = {i ∈ [d] | ai > i}. We set d(π) = #D(π) and e(π) = #E(π). As an
example, the permutation π = 34521 has D(π) = {3, 4} and E(π) = {1, 2, 3},
and hence d(π) = 2 and e(π) = 3. We construct the descent polynomialDd(t)
of Sd by defining its k–th coefficient to be the number of permutations in Sd

with k descents and the excedance polynomial Ed(t) of Sd in an analogous
way. It is well known that Dd(t) = Ed(t), i.e. descents and excedances are
equidistributed over Sd. Moreover, Dd(t) equals, up to a factor of t, the d–th
Eulerian polynomial Ad(t). The Eulerian polynomials have been extensively
studied in various different contexts.

Other statistics which have been much studied are the major index and
the inversion index of a permutation. The major index maj(π) of π =
a1a2 . . . ad is the sum of all i in the descent set of π. An inversion in π is a
pair (i, j) such that i < j and ai > aj. The inversion index of a permutation
π is the number of inversions in π and is denoted inv(π). It is known that inv
and maj are equidistributed, i.e.

∑
π∈Sd

tinv(π) =
∑

π∈Sd
tmaj(π), and Foata [8]

has constructed a bijection φ : Sd → Sd which satisfies maj(π) = inv(φ(π)).
Recently, Denert [7] described a new statistic on Sd, defined in terms of

excedances (see section 4.3 here). She conjectured that the joint distribu-
tion of the pair (d(π),maj(π)) was equal to that of (e(π), den(π)), i.e. that∑

π∈Sd
td(π)xmaj(π) =

∑
π∈Sd

te(π)xden(π). In [10], Foata and Zeilberger proved
the conjecture, and later Han (see [13]) constructed an explicit bijection to
prove this.

In this paper, we generalize the definitions of descents and excedances to
the elements (which we call indexed permutations) of the groups Sn

d := Zn ≀Sd,
where ≀ is wreath product with respect to the usual action of Sd by permuta-
tions of [d]. These groups are unitary groups generated by reflections, i.e. the
symmetry groups of certain regular complex polytopes (see [18]). The ele-
ments of Sn

d can be represented by permutation words in Sd where each letter
ai has a subscript zi (its index), where zi ∈ {0, 1, . . . , n − 1}. As an exam-
ple, 25401231 is an element of S6

4 . We show, bijectively, that excedances and
descents are still equidistributed, and we compute the corresponding descent
polynomials Dn

d (t) as the f–eulerian polynomial of a simple polynomial.
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We also show that the descent polynomial equals the h–polynomial (es-
sentially the h–vector) of a certain triangulation of the unit d–cube. This is
done by constructing a bijection which exploits the fact that the h–vector of
the triangulation in question can be computed via a shelling of the simplicial
complex arising from the triangulation.

Using the work of Brenti [6], we show that the descent polynomials Dn
d (t)

have only real roots, which implies that they are unimodal.
We also generalize the famous formula

∑
d≥0Ed

xd

d!
= sec x+ tanx, where

Ed is the number of alternating permutations in Sd, in two different ways,
one of which relates to recent work of Arnold [2] on Morse theory. In each
case, the resulting formula is then used to find a relation between the number
of alternating (respectivley weakly alternating) indexed permutations in S3

d

(respectively S2
d) and the value of the corresponding descent polynomial at

–1.
We generalize the definitions of inv and maj to Sn

d , and show that they
are equidistributed, and we also generalize Denert’s statistic to Sn

d and show
that the pair (d(p),maj(p)) is equidistributed with the pair (ǫ(p), den(p)),
where ǫ(p) is an alternative definition of excedance, equidistributed with our
first one.

Finally, we generalize a bijective proof of Stanley’s (of a result essentially
due to Laplace) which shows that the the number of permutations in Sd with
k descents equals, up to a factor of d!, the volume of the subspace of the unit
d–cube lying between the hyperplanes defined by {x ∈ Rd | ∑i xi = k} and
{x ∈ Rd | ∑i xi = k + 1}, respectively.

Many of the statistics studied here are computed on a finer scale than
just for the groups Sn

d , namely for the left cosets of a certain distinguished
subgroup of Sn

d . The bijection mentioned above, which proves the equality
of Dn

d (t) and the h–polynomial of a triangulation of the unit d–cube, relates
each of these cosets to a certain geometrically defined subcomplex of the
triangulation in question.

The following notation will be adhered to throughout:
We denote by [n] the set {1, 2, . . . n} which, when relevant, is assumed

endowed with its usual linear order.
The quotient Z/nZ where Z is the infinite cyclic group of integers and

n ∈ Z will be denoted Zn. We always represent the elements of Zn by the
elements of {0, 1, . . . , n−1}, and when we refer to an ordering of the elements
of Zn it is the ordering induced by the usual ordering of {0, 1, . . . , n− 1}.

An element π of the symmetric group Sd will most often be represented
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as a word π = a1a2 . . . ad, where ai = π(i).
We use boldface letters to denote vectors, for example z = (z1, z2, . . . , zd).

In particular, 0 := (0, 0, . . . , 0).
We shall be concerned with the elements of the wreath product Zn ≀ Sd.

For a definition and more information on wreath products, see [15].

2 Definitions and some basic results

Definition 1 An indexed permutation is an element of the group Sn
d :=

Zn ≀ Sd (where ≀ is wreath product with respect to the usual action of Sd by
permutation of [d]). We represent an indexed permutation as the product π×z

of a permutation word π = a1a2 . . . ad ∈ Sd and a d–tuple z = (z1, z2, . . . , zd)
of integers zi ∈ Zn. As a convention, we set ad+1 = d+ 1 and zd+1 = 0.

It should be pointed out that the elements of Sn
d can be taken as those

matrices in GL(n,C) which have exactly one non–zero entry in each row and
column and such that each of these non–zero entries is an n–th root of unity.
With this definition, the product in Sn

d is simply matrix multiplication. With
the notation π×z, the product is defined by (π×z)·(τ×w) = πτ×(z+π(w)),
where π(w) = (wπ(1), wπ(2), . . . , wπ(d)) and the + is coordinate-wise addition
modulo n.

Definition 2 A descent in p = π × z ∈ Sn
d is an integer i ∈ [d] such that

1) zi > zi+1 OR
2) zi = zi+1 and ai > ai+1 .

In particular, d is a descent if and only if zd > 0.

Definition 3 An excedance in p is an integer i ∈ [d] such that

1) ai > i OR
2) ai = i and zi > 0 .

As an example, let p = 321465 × (0, 0, 3, 2, 2, 1). Then p has descents at 1,
3, 5 and 6 and excedances at 1, 4 and 5.

It is convenient to think of an element of Sn
d as a permutation word in

which every letter has a subscript. For example, p = 321465×(0, 0, 3, 2, 2, 1) ∈
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S4
5 can be represented by 302013426251. We call the subscripts indices. Using

this, there is an alternative definition of descent. Namely, define an ordering
<ℓ on the alphabet {iz | i ∈ [d], z ∈ Zn} by setting iz <ℓ jw if

i) z < w OR
ii) z = w and i < j.

Then a descent in p = a1z1a2z2 . . . adzd
1 is an i such that ai+1zi+1

<ℓ aizi .
This ordering of the letters induces a lexicographic ordering of the indexed
permutations in Sn

d , which we will later make use of.

Definition 4 Define an ordering <L of the elements of Sn
d by setting

p = a1z1a2z2 . . . adzd <L q = b1w1
b2w2

. . . bdwd
if aizi <ℓ biwi

for the first i at
which p and q differ.

Definition 5 Let p be an element of Sn
d . Let e(p) = #{i | i is an ex-

cedance in p} and let d(p) = #{i | i is a descent in p}. Then En
d (t) :=∑

p∈Sn
d
te(p) is the excedance polynomial of Sn

d and Dn
d (t) :=

∑
p∈Sn

d
td(p) is

the descent polynomial of Sn
d . Moreover, let E(d, n, k) := #{p ∈ Sn

d | p has
k excedances} and let D(d, n, k) := #{p ∈ Sn

d | p has k descents}, so that

En
d (t) =

∑d

k=0E(d, n, k)tk and Dn
d (t) =

∑d

k=0D(d, n, k)tk.
As a convention, if n ≥ 0, we define Sn

0 to consist of one (empty) indexed
permutation and hence we have E(0, n, 0) = D(0, n, 0) = 1.

Note that when n = 1, Sn
d is essentially Sd and the definitions of descent

and excedance coincide with the classical definitions (see, for example, [20]).

Definition 6 Let p ∈ Sn
d and let D(p) = {i ∈ [d] | i is a descent in p}. Then

D(p) is the descent set of p.

We will now construct a bijection Sn
d → Sn

d which takes an indexed per-
mutation with k descents to one with k excedances. First a definition which
we will frequently refer to in what follows.

Definition 7 Let Sz be the set of permutation words on the letters 1z1, 2z2, . . . , dzd.
That is, Sz = {π(1z12z2 . . . dzd) | π ∈ Sd}.

1To make the notation a little less awkward, we write aizi instead of (ai)zi , although
zi is a subscript to ai rather than to just the i in ai.
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As an example, if z = (1, 0, 1) then the elements of Sz (ordered by <L)
are 201131,203111, 112031, 113120, 312011, 311120.

Note that S0 is the subgroup {π × 0 | π ∈ Sd} of Sn
d and Sz is the left

coset (π × z)S0 for any π ∈ Sd.
Let Zd

n be the direct product of d copies of Zn. Clearly, S
n
d is the disjoint

union of the Sz’s for all z ∈ Zd
n. The bijection we are about to construct will

actually map Sz to itself for each z ∈ Zd
n. However, we need to do this in

three steps.

Lemma 8 Suppose z = (z1, . . . , zd) ∈ Zd
n and w = (w1, . . . , wd) ∈ Zd

n have
the same number of positive coordinates. Then there is a bijection Γ : Sz →
Sw which preserves the descent set of p. In particular, d(Γ(p)) = d(p).

Proof: The ordering <ℓ used in Definition 4 is a linear ordering of the
letters 1z1, 2z2, . . . , dzd, respectively of the letters 1w1

, 2w2
, . . . , dwd

. Hence
there is a unique bijection θ : {izi | i ∈ [d]} → {iwi

| i ∈ [d]} such that
θ(izi) <ℓ θ(jzj ) if and only if izi <ℓ jzj . In particular, since z = (z1, . . . , zd) and
w = (w1, . . . , wd) have the same number of positive coordinates, zi > 0 if and
only if wj > 0 where jwj

= θ(izi). Now, given p ∈ Sz, define Γ : Sz → Sw by
Γ(p) = Γ(a1z1a2z2 . . . adzd) := θ(a1z1)θ(a2z2) . . . θ(adzd). Then, by definition
of θ, i is a descent in p if and only if i is a descent in Γ(p). In particular,
since z and w have the same number of positive coordinates, d is a descent
in p if and only if d is a descent in Γ(p). Hence, Γ preserves not only the
number of descents in p but actually the descent set D(p) of p.

Example 9 Let z = (1, 0, 2, 1). Then <ℓ induces the following ordering of
the letters 11, 20, 32, 41: 20 <ℓ 11 <ℓ 41 <ℓ 32. Hence, if, as an example, we
let p = 32204111 and w = (0, 1, 1, 1) , we have Γ(p) = 41103121.

In the proof of the next lemma, we make use of a bijection φ which is
described in the appendix at the end of this paper.

Lemma 10 Let w = (w1, . . . , wd) ∈ Zd
n. Suppose there is a k ∈ [d] such

that wi = 0 for i < k and wi = 1 for all i ≥ k. Then there is a bijection
Ψ : Sw → Sw such that e(Ψ(p)) = d(p).

Proof: Given p = a1wa1
a2wa2

. . . adwad
∈ Sw, map p to π = a′1a

′
2 . . . a

′
d+1 ∈

Sd+1 where a′d+1 = k and a′i = ai if ai < k, a′i = ai + 1 if k ≤ ai ≤ d. Then
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i is a descent in π if and only if i is a descent in p. Now apply the bijection
φ in Theorem 51 to π to obtain τ = φ(π), where τ = b1b2 . . . bd+1 has an
excedance bi > i if and only if . . . bii . . . appears as a descent in π. Let m be
such that bm = k, and observe that, by the definition of φ, m ≥ k, so that
m is not an excedance in τ . Let i′ = i if i < m and i′ = i + 1 if i ≥ m.
Now map τ to q = c1wc1

c2wc2
. . . cdwcd

∈ Sw by setting ci = bi′ and wci = 0
if bi′ < k, wci = 1 if bi′ > k. Thus, k is deleted from τ and each remaining
letter of τ is mapped back to what it was in p, that is, bi in τ is replaced by
(bi − 1)1 if bi > k, but otherwise bi is replaced by (bi)0. Also, some of the
“place numbers” have to be reduced, so that a letter which was in place i
with i > m is in place i− 1 in q.

We claim that i is an excedance in τ if and only if i′ is an excedance in
q, so that τ and q have the same number of excedances, since m was not an
excedance in τ . If i < m then in q we either have (bi)0 or (bi − 1)1 in place i.
In either case, i is an excedance in q if and only if i is an excedance in τ . If
i > m then in place i− 1 in q we again have either (bi)0 or (bi − 1)1. If bi 6= i
then i− 1 is an excedance in q if and only if i is an excedance in τ . Suppose,
then, that bi = i. Then, by Corollary 53, i < k, since k is the last letter in
π. Hence, we have i < k ≤ m, contrary to assumption, so bi 6= i and we are
done.

Example 11 Let p = 41103121. Then p 7−→ 51432
φ7−→ 53421 7−→ 41213110,

so Ψ(p) = 41213110.

Lemma 12 Supposew = (w1, w2, . . . , wd) has wk > 0 for some k and wj = 0
for some j and that z = (z1, z2, . . . , zd) satisfies zk = 0, zj > 0 and zi = wi for
i 6∈ {k, j}. Then there is a bijection Φ′ : Sw → Sz such that e(Φ′(p)) = e(p).

Proof: A positive coordinate wi of w affects excedances in p = π × π(w)
in a way which is independent of whether wi = 1 or wi > 1. Hence we
may assume, without loss of generality, that zi, wi ∈ {0, 1} for all i. Then,
zj = wk = 1 and zk = wj = 0. That is, z is obtained from w by trans-
posing wk and wj. Let p = π × π(w) where π = a1a2 . . . ad. We define
Φ′ : Sw → Sz by defining a certain bijection φ′ : Sd → Sd and setting
Φ′(π×π(w)) = φ′(π)×φ′(π)(z). φ′(π) is defined by the following trichotomy.

(1) For all π ∈ Sd such that π either fixes both j and k or neither, i.e.
either aj = j and ak = k or aj 6= j and ak 6= k, we let φ′(π) = π. Hence,
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for such p, q = Φ′(p) is obtained from p simply by interchanging the indices
of k and j in p (i.e. k gets the index wj and j the index wk). Consequently,
the number of excedances is preserved, for in the first case we are moving an
excedance from k to j and in the latter case no excedances will be affected
since aj 6= j and ak 6= k. As an example, if k = 2 and j = 5, we have
Φ′(3021411050) = 3020411051 and Φ′(5140211030) = 5140201030. Clearly, this
is injective, for φ′(π) = φ′(τ) if and only if π = τ .

(2) Suppose ak = k and aj 6= j. We then define φ′(π) = τ = b1b2 . . . bd
in the following way. Let bj = j. Let F be the set of fixed points of π, i.e.
F = {i ∈ [d] | ai = i}. In particular, k ∈ F and j 6∈ F . Given a set S, let
Si denote S \ {i} and let Si denote S ∪ {i}. Let D = [d] \ F . Set bj = j
and set bi = i for all i ∈ Fk. By definition, the restriction of π to D is a
derangement of D, i.e. ai 6= i for all i ∈ D. We have already defined bi for
all i ∈ F j

k by declaring such i to be fixed points of τ . Hence, for all i ∈ Fk, i
is an excedance in Φ′(p) if and only if i is an excedance in p, because ai = bi
and wi = zi. Moreover, k is an excedance in p and j is an excedance in Φ′(p).
Thus, so far, we have the same number of excedances in p and Φ′(p).

What remains to be defined is how τ permutes the elements of Dk
j .

There is a unique order preserving bijection θ : D → Dk
j , i.e. θ maps

the smallest element of D to the smallest element of Dk
j , the next smallest

element of D to the next smallest element of Dk
j and so on. In other words,

θ(i) > θ(m) if and only if i > m. Now, if i ∈ Dk
j , we set bi = θ(aθ−1(i)).

Note that this defines a bijection τ |Dk
j
: Dk

j → Dk
j , as required. This further

guarantees that bi 6= i for all i ∈ Dk
j , in particular bk 6= k, and, moreover,

that bi > i precisely when aθ−1(i) > θ−1(i). Note also that whether i ∈ Dk
j

is an excedance in Φ′(p) is not dependent on wbi since bi 6= i. The same is
true of θ−1(i) and p (and zθ−1(i)), so i is an excedance in Φ′(p) if and only if
θ−1(i) is an excedance in p.

Let us illustrate this by an example. Let k = 2, j = 5 and q = 31211041605070
so that π = 3214657. Then F = {2, 4, 7} and D = {1, 3, 5, 6}. Hence, τ fixes
4, 5 and 7. θ maps {1, 3, 5, 6} to {1, 2, 3, 6} by sending 1 to 1, 3 to 2, 5 to 3
and 6 to 6. Hence, τ = 2164537, so Φ′(p) = 20106041513170.

Again, this is injective because if φ′(π) = φ′(τ) then φ′(π) and φ′(τ) have
the same fixed points, and hence π and τ have the same fixed points, so π and
τ must be identical on the remaining elements of [d], because the bijection θ
was unique.
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(3) The case when ak 6= k and aj = j is similar to (2). As a matter
of fact, it turns out that the similar argument results in this: If p ∈ {q =
π × π(w) ∈ Sw | ak 6= k and aj = j} then Φ′(p) = (φ′)−1(π)× (φ′)−1(π)(z),
which is well defined, because (φ′)−1(π) is (implicitly) defined in (2).

As an example, since we had Φ′(31211041605070) = 20106041513170, we
have
Φ′(21106041503170) = 31201041605170.

It is obvious that Sw is the disjoint union of the domains described in
(1), (2) and (3) and that Sz is the disjoint union of the images in (1), (2),
and (3).

Example 13 Let p = 41213110 and let z = (1, 0, 2, 1) (so z is as in Example
9). Then Φ′(p) = 11413220.

By repeated applications of Φ
′

we get the following, more general result:

Lemma 14 Suppose w = (w1, w2, . . . , wd) and z = (z1, z2, . . . , zd) have the
same number of positive coordinates. Then there is a bijection Φ : Sw → Sz

such that e(Φ(p)) = e(p).

We now use these lemmas to construct a bijection Sz → Sz which takes
an indexed permutation with k descents to one with k excedances. Suppose
z has exactly m positive coordinates. Let w be defined by wi = 0 if i ≤ d−m
and wi = 1 if i > d−m. Then the composition

Sz

Γ−→ Sw

Ψ−→ Sw

Φ−→ Sz

is a bijection which takes a p ∈ Sz with k descents to a q ∈ Sz with k
excedances. There follows

Theorem 15 For all n ≥ 1 and for all d ≥ 0, En
d (t) = Dn

d (t).
Let Ad(t) = tD1

d(t). It has long been known that Ad(t) satisfies
Ad(t)

(1−t)d+1 =∑
k≥1 k

dtk and the polynomial Ad(t) is called the d-th Eulerian polynomial.
Theorem 17 generalizes this relation to our descent polynomials Dn

d (t). First,
a lemma. By analyzing the effect of inserting dm, for 0 ≤ m ≤ n − 1, in a
permutation in Sn

d−1, one finds the following recurrence:

Lemma 16 The coefficients of En
d (t), and hence those of Dn

d (t), satisfy

E(d, n, k) = (nk+1)E(d−1, n, k) + (n(d−k)+(n−1))E(d−1, n, k−1).

9



As a generalization of the Eulerian polynomials, a polynomial P (t) which

satisfies P (t)
(1−t)d+1 =

∑
k≥0 f(k)t

k, where f is a polynomial of degree d, is called
the f-eulerian polynomial. Using the recurrence in Lemma 16, we get

Theorem 17
En

d (t)

(1− t)d+1
=
∑

i≥0

(ni+ 1)dti, i.e. En
d (t) is the f-eulerian poly-

nomial where f(i) = (ni+ 1)d.

There is a way of proving the preceding theorem combinatorially when
En

d (t) is replaced by Dn
d (t). Actually, we can derive the theorem from a

finer computation of Dn
d (t). Namely, given z ∈ Zd

n, we compute the descent
polynomial Dz(t) :=

∑
p∈Sz

td(p). The proof of the following theorem (given
in [22]) is a modification of the proof of Lemma 4.5.1 and of the proof of
Theorem 4.5.14 in [20] in the special case where the poset in question is an
antichain.

Theorem 18 Suppose z ∈ Zd
n has exactly m positive coordinates and let

Dz(t) :=
∑

p∈Sz

td(p). Then

∑

k≥0

(k + 1)d−mkmtk =
Dz(t)

(1− t)d+1
.

From these expressions for Dz(t) and Dn
d (t), we get some further interest-

ing results about these polynomials. In [6], Brenti shows that if a polynomial
f(n) has all its roots in the interval [−1, 0], then its f -eulerian polynomial
W (t) = w0+w1t+· · ·+wdt

d (defined above) has only real zeros (see Theorems
4.4.4 and 2.3.3 in [6]). That, in turn, implies that the sequence w0, w1, . . . , wd

of coefficients of W (t) is unimodal, i.e. w0 ≤ w1 ≤ · · · ≤ wk ≥ wk+1 ≥ · · · ≥
wd for some k with 0 ≤ k ≤ d. Thus, the following theorem is an obvious
consequence of Theorems 17 and 18.

Theorem 19 For any d and n, the polynomial Dn
d (t) has only real zeros. In

particular, there is a k ∈ {0, 1, . . . , d} such that

D(d, n, 0) ≤ D(d, n, 1) ≤ · · · ≤ D(d, n, k) ≥ D(d, n, k+1) ≥ · · · ≥ D(d, n, d).

The same is true of the polynomial Dz(t) for any z ∈ Zd
n.
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It was known already to Euler that the polynomials Ad(t) = tD1
d(t) satisfy

t−1
∑

d≥0

Ad(t)
xd

d!
=

(1− t)ex(1−t)

1− tex(1−t)
.

This can be derived in a way which trivially generalizes to the derivation for
Dn

d (t):

∑

d≥0

Dn
d (t)

(1− t)d+1

xd

d!
=
∑

d≥0

(∑

k≥0

(nk + 1)dtk

)
xd

d!
=
∑

k≥0

tk
∑

d≥0

(nk + 1)dxd

d!
=
∑

k≥0

tke(nk+1)x.

Now, multiply both sides by (1− t) and replace k by d in the RHS to get

∑

d≥0

Dn
d (t)

(1− t)d
xd

d!
= (1− t)

∑

d≥0

tde(nd+1)x = (1− t)ex
1

1− tenx
.

Finally, replace x by x(1− t) to obtain

Theorem 20
∑

d≥0

Dn
d (t)

xd

d!
=

(1− t)ex(1−t)

1− tenx(1−t)
.

3 The geometric connection

What is perhaps most interesting about Theorem 17 is that it suggests a
connection between our descent polynomials and the Ehrhart polynomials of
certain integral polytopes. This, in turn, leads to the observation that if the
dilation nCd of the unit d–cube by n could be triangulated by d–simplices of
volume 1/d!, then the h–polynomial of the triangulation would equal Dn

d (t).
This is discussed in detail in [22].

3.1 Background

A simplicial complex K is pure if all its maximal faces have the same di-
mension d = dim(K). If K is a pure simplicial complex of dimension d,
then a facet of K is a d-face, i.e. a d-dimensional face, of K. The h-
vector h(K) = (h0, h1, . . . , hd) of a simplicial complex K of dimension d-1
is defined as follows: Let fi = fi(K) be the number of i-dimensional faces
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in K, where we set f−1 = 1 (corresponding to the empty set), and define
h(K) = (h0, h1, . . . , hd) by setting

d∑

i=0

fi−1(x− 1)d−i =

d∑

i=0

hix
d−i.

We define the h-polynomial h(K, t) of K by h(K, t) = h0 + h1t + · · ·+ hdt
d.

For further information about h-vectors, see [21].
Let σ be a simplex. In what follows we will, by abuse of notation, also

let σ denote the complex consisting of σ and all its faces and, in case σ has a
geometric realization in the euclidean space Rd, the subspace of Rd realizing
σ.

Definition 21 Let K be a finite pure simplicial complex of dimension d. An
ordering F1, F2, . . . , Fn of the facets of K is called a shelling if, for all k with

1 < k ≤ n, Fk ∩
k−1⋃

i=1

Fi is a pure complex of dimension (d-1). A complex K

is said to be shellable if there exists a shelling of K.

That is, a complex is shellable if it can be built up by adding one facet
at a time in such a way that, for k > 1, the intersection of each Fk with the
complex generated by the previous Fi’s is a nonempty union of (d-1)-faces of
Fk.

As it turns out, the h-vector of a shellable complex can be computed from
the shelling. The following theorem is essentially due to McMullen [16].

Theorem 22 Let F1, F2, . . . , Fn be a shelling of K and let c(k) be the number

of (d−1)–faces of Fk contained in
⋃

i<k

Fi. Then we have the following formula:

h(K, t) =

n∑

i=1

tc(i).

Thus, given a shelling F1, F2, . . . , Fn of a simplicial complex K, we can
compute the h-polynomial h(K, t) of K via Theorem 22. In doing that,
we say that a facet Fi of K contributes to the k-th coefficient of h(K, t) if
c(i) = k.

Our goal is to find a shellable triangulation of nCd, whose h-polynomial
equals Dn

d (t). For this purpose, we need a couple of lemmas.
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Definition 23 Let Cd be the standard unit d-cube. For each permutation
word π = a1a2 . . . ad in Sd, let σπ = {x = (x1, x2, . . . , xd) ∈ Cd | 1 ≥ xa1 ≥
xa2 ≥ · · · ≥ xad ≥ 0}. We call σπ the path simplex defined by π.

The reason for calling σpi a path simplex is that if π = a1a2 . . . ad then σπ

can be defined as the convex hull of the path traveling through vertices 0,
ea1 , ea1 + ea2 , . . ., ea1 + ea2 + · · · + ead , where ei is the i-th standard basis
vector in Rd.

The collection {σπ | π ∈ Sd} of path simplices induces a simplicial sub-
division of the unit d-cube Cd. Namely, their union covers Cd and the inter-
section of any two of the path simplices is a face of each one.

Remark 24 Let π = a1a2 . . . ad, so that σπ = {x = (x1, x2, . . . , xd) ∈
Cd | 1 ≥ xa1 ≥ xa2 ≥ · · · ≥ xad ≥ 0} is a path simplex. A k-dimensional face
of σπ is defined by replacing d− k of the ≥’s by =’s, i.e. by replacing d− k
of the linear inequalities defining σπ by their boundary equalities.

For example, the 2-faces of σ213 = {x = (x1, x2, x3) ∈ C3 | 1 ≥ x2 ≥ x1 ≥
x3 ≥ 0} are {x ∈ C3 | 1 = x2 ≥ x1 ≥ x3 ≥ 0}, {x ∈ C3 | 1 ≥ x2 = x1 ≥ x3 ≥
0}, {x ∈ C3 | 1 ≥ x2 ≥ x1 = x3 ≥ 0}, {x ∈ C3 | 1 ≥ x2 ≥ x1 ≥ x3 = 0}.

The following lemma is a straightforward consequence of Remark 24.

Lemma 25 Two path simplices intersect maximally if and only if their cor-
responding permutations differ by a single transposition . . . aiai+1 . . . → . . . ai+1ai . . .
of adjacent letters.

Lemma 26 Let Kd be the collection {σπ | π ∈ Sd} of path simplices which
triangulate the unit d-cube. Order the simplices in Kd by the lexicographic
ordering of their corresponding permutation words. This ordering is a shelling
of the unit d-cube.

Proof: Let Bd be the Boolean algebra on d elements. Then Kd is the order
complex of Bd and the lemma is just a special case of lexicographic shellability
(see [3]). A direct proof of the lemma is given in [22].
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3.2 The triangulation and shelling of nCd

We will now construct a triangulation n̂Cd of nCd and then shell that tri-
angulation. The shelling will give rise to a bijection associating an indexed

permutation in Sn
d with k descents to a facet of n̂Cd that contributes to the

k-th coefficient of h(nCd, t) when the h-polynomial is computed from the
shelling.

Embed nCd in Rd so that the coordinates of its vertices are all d-tuples
which consist of only 0’s and n’s. That is, nCd is the image of the standard
unit d-cube under the map f : Rd → Rd defined by f(x) = nx. Subdivide
nCd into nd cubes of volume 1 in the obvious way, i.e. given any vector
v = (v1, v2, . . . , vd) such that vi ∈ {0, 1, . . . , n − 1}, we obtain a unique
d-cube contained in nCd by translating the standard unit d-cube by this
vector. We label each of these cubes with the corresponding vector, so that
the standard unit cube is c0 and cv = c0 + v. Subdivide c0 into the path
simplices defined in 23. This induces a simplicial subdivision of c0. The
other cubes are subdivided in an analogous way, so that a triangulation of a
cube labeled with v coincides with the translation by v of the triangulated
standard unit cube. This induces a simplicial subdivision of nCd which we

call n̂Cd.
To order the simplices of n̂Cd we proceed as follows: A facet σ of the cube

c0 is labeled by π × 0 where π is the permutation defining σ (cf. Definition
23). For z 6= 0, if σ is a facet in the cube cz and σ = σπ×0 + z (i.e. σ is
the translation by z of the path simplex defined by π), then σ is labeled by
π × π(z). Note that by permuting the coordinates of z in this way, so that
the i-th coordinate of z follows i, we are actually labeling the facets of the
cube cz by all the permutation words on the letters 1z1, 2z2, . . . , dzd, that is,
by the elements of Sz (See Definition 7).

Let < denote the lexicographic ordering of vectors of the same length.
That is, if z = (z1, z2, . . . , zd) and w = (w1, w2, . . . , wd), then z < w if and
only if zi < wi for the first i at which z and w differ. We now order the

facets of n̂Cd as follows:

Definition 27 Let O be the following ordering <O of the facets of n̂Cd:
O1) If z < w then σπ×π(z) <O στ×τ(w) for all π and τ.
O2) If π × π(z) <L τ × τ(z) then σπ×π(z) <O στ×τ(z).

Thus, a facet in cz comes before any facet in cw if z < w. The ordering of
the facets in a single cube cz is a permutation of the shelling order described in
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Lemma 26. Moreover, it is induced by permuting the coordinate axes in Rd.
Hence, this ordering must also be a shelling of the cube in question, because
the shelling in Lemma 26 is clearly independent of how the coordinate axes
are labeled. We thus have:

Lemma 28 The restriction of the ordering O to the facets of a cube cz in

n̂Cd is a shelling of that cube.

For the next lemma, we need the following remark.

Remark 29 Let π = a1a2 . . . ad and let z = (z1, z2, . . . , zd). The facet
σπ×π(z) satisfies

σπ×π(z) = {x ∈ Rd | 1 ≥ xa1 − za1 ≥ xa2 − za2 ≥ · · · ≥ xad − zad ≥ 0}.

Lemma 30 Let σp be a facet of cz in n̂Cd and let p = π × π(z) where
π = a1a2 . . . ad. Then σp has two (d-1)-faces which lie on the boundary of cz.
These faces are defined by σ0

p := {x ∈ Cd | 1 ≥ xa1 ≥ xa2 ≥ · · · ≥ xad = 0}+z

and σ1
p := {x ∈ Cd | 1 = xa1 ≥ xa2 ≥ · · · ≥ xad ≥ 0} + z, respectively. If

zad ≥ 1 then σ0
p is a (d-1)-face of a facet of the cube cz−ead

= cz − ead . If
za1 ≤ n− 2 then σ1

p is a (d-1)-face of a facet of the cube cz+ea1
= cz + ea1.

Moreover, the intersection of σp with any cube cw 6= cz is contained in
the union of σ0

p and σ1
p. More specifically, if w < z then σp ∩ cw ⊂ σ0

p and if
w > z then σp ∩ cw ⊂ σ1

p

Proof: Clearly, σ0
p and σ1

p are (d-1)-faces of σp. Since each lies in a hyper-
plane supporting the cube cz, they must lie on the boundary of cz. Now, if
zad ≥ 1 then

σ0
p = {x ∈ Rd | 1 ≥ xa1 − za1 ≥ xa2 − za2 ≥ · · · ≥ xad − zad = 0} =

{x ∈ Rd | 1 = xad−zad+1 ≥ xa1−za1 ≥ xa2−za2 ≥ · · · ≥ xad−1
−zad−1

≥ 0} = σπ′×π′(z′)

where π′ = ada1a2 . . . ad−1 and z′ = z − ead , so σπ′×π′(z′) ⊂ cz′. Similar
reasoning shows that if za1 ≤ n− 2 then σ1

p = σ0
r where r = π′′ × π′′(z+ ea1)

and π′′ = a2a3 . . . ada1. To show that σp ∩ cw ⊂ σ0
p ∪ σ1

p for any w 6= z,
observe that a point x0 = (x1, x2, . . . , xd) ∈ σp∩ cw must lie on the boundary
of cz and must have xi = zi (if w < z) or xi = zi + 1 (if w > z), where i is
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the first coordinate in which w and z differ. Suppose aj = i. Then, if w < z,
x0 must belong to the set

{x ∈ R
d | 1 ≥ xa1−za1 ≥ xa2−za2 ≥ · · · ≥ xaj−zaj = xaj+1

−zaj+1
= · · · = xad−zad = 0} ⊂ σ0

p

and, if w > z, x0 must belong to the set

{x ∈ R
d | 1 = xa1−za1 = xa2−za2 = · · · = xaj−zaj ≥ xaj+1

−zaj+1
≥ · · · ≥ xad−zad ≥ 0} ⊂ σ1

p,

as claimed.

Theorem 31 The ordering O defines a shelling of n̂Cd.

Proof: Let σp be a facet of the cube cz in n̂Cd with p = π × π(z) =
a1a2 . . . ad × (za1 , za2 , . . . , zad). If z = 0 then we are done, by Lemma 26. So
assume z 6= 0.

We need to show that Ip := σp ∩
⋃

q<p σq is a nonempty union of (d-1)-
faces of σp (where, by abuse of notation, q < p means q <O p). By Lemma
28, since the restriction of O to the cube cz is a shelling of cz, the intersection
Iz := Ip ∩ cz of σp with those facets in cz which are prior to σp must be a
union (possibly empty) of (d-1)-faces of σp. If this union is empty, p must
be the least indexed permutation in Sz, so zad > 0 since z 6= 0. Hence, σ0

p

belongs to a facet of the cube cz′ = cz−ead
, so Ip = σ0

p , a (d-1)-face of σp as
desired.

If Iz 6= ∅, then, by Lemma 28, Iz is a union of (d-1)-faces of σp, so what
remains to be taken into account is how σp intersects other small cubes than
its own. Obviously, we need only check those cubes cw for which w < z. By
Lemma 30, we need only check how σ0

p intersects such small cubes. Now, if
zad 6= 0 then, by Lemma 30, σ0

p = σ1
q for some q < p, so Ip is a union of

(d− 1)-faces of σp, viz. Ip = Iz ∪ σ0
p .

Suppose, then, that zad = 0 and that σ0
p intersects cw where w < z.

Then, for each i ∈ [d], wi can differ by at most 1 from zi. Let i be the
first coordinate in which w and z differ. Then, since w < z, we must have
wi = zi − 1. Hence, any point x0 in σ0

p ∩ cw must belong to the set

{x ∈ Rd | 1 ≥ xa1−za1 ≥ xa2−za2 ≥ · · · ≥ xi−zi = xi+1−zi+1 = · · · = xad−zad = 0},

because 0 ≤ xi − wi ≤ 1, so 0 ≤ xi − zi + 1 ≤ 1, and therefore xi − zi = 0.

16



Let j be such that zaj > 0 and zak = 0 for all k > j. Such a j must exist,
since z 6= 0 and zad = 0. Also, aj ≥ i, since zi = wi + 1 ≥ 1. But then

{x ∈ R
d | 1 ≥ xa1−za1 ≥ xa2−za2 ≥ · · · ≥ xi−zi = xi+1−zi+1 = · · · = xad−zad = 0} ⊂

{x ∈ R
d | 1 ≥ xa1−za1 ≥ xa2−za2 ≥ · · · ≥ xaj−zaj = xaj+1

−zaj+1
≥ · · · ≥ xad−zad = 0}.

This last set is a (d-1)-face of σp and of σq = στ×τ(z) where τ = a1a2 . . . aj+1aj . . . ad,
so τ(z) = (za1 , za2 , . . . , zaj+1

, zaj , . . . , zad). Hence, since zaj > 0 and zaj+1
= 0,

q is prior to p in O, so the (d-1)-face σp ∩ σq of σp is contained in Ip and we
have shown that any x0 ∈ σ0

p ∩ cw lies in this face. Hence, Ip is a union of
(d-1)-faces of σp and the proof is complete.

Recall that by Theorem 22 we can compute the h-polynomial of a simpli-
cial complex K from a shelling of K. Namely, if F1, F2, . . . , Fn is a shelling
of K and c(i) is as in Theorem 22, then hk = #{i | c(i) = k}, where hk is
the k-th coefficient of the h-polynomial of K. That is, hk equals the number
of facets Fi such that Fi intersects

⋃i−1
j=1 Fj in k distinct faces of dimension

(d − 1). Now, in the shelling of n̂Cd the facets in a single cube Cz were
ordered so that σq = στ×τ(z) was prior to σp = σπ×π(z) if and only if q <L p
in the lexicographic ordering of indexed permutations. Also, by Lemma 25,
σp intersects σq maximally if and only if π and τ (hence p and q) differ by a
single transposition. Suppose now that σp and σq intersect maximally. Then,
if p = a1z1a2z2 . . . adzd, we must have q = a1z1a2z2 . . . ak+1zk+1

akzk . . . adzd for
some k ∈ [d− 1]. If σq is prior to σp then we must have that ak+1zk+1

<ℓ akzk
and hence that k constituted a descent in p. Conversely, every internal de-
scent k (i.e. k ∈ [d− 1]) in p corresponds to a facet σs in cz which intersects
σp maximally and for which s <L p. That is, there is a one-to-one correspon-
dence between internal descents in p and facets in cz which are prior to σp

and which intersect σp maximally.

The only other facets of n̂Cd which σp intersects maximally are those
which contain σ0

p and σ1
p . A facet containing σ1

p must come after σp. A facet
containing σ0

p must be prior to σp and belong to the cube cz−ead
, which exists

in n̂Cd if and only if zad > 0, i.e. if and only if d is a descent in p. Hence, the

number of descents in p equals the number of facets in n̂Cd which are prior
to σp and which intersect σp maximally. This number must equal the number
of (d− 1)-faces in σp ∩

⋃
q<p σq, because nC

d is a manifold with boundary, so
a (d− 1)-face can belong to at most two facets. We have proved:
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Theorem 32 For all d ≥ 0 and for all n ≥ 1, Dn
d (t) = h(n̂Cd, t).

4 Other statistics

4.1 Alternating permutations

In the classical case of the symmetric group, a permutation π = a1a2 . . . ad ∈
Sd is said to be alternating if it has descent set D(π) = {1, 3, 5, . . . , d−1} for d
even and D(π) = {1, 3, 5, . . . , d− 2} for d odd, so that a1 > a2 < a3 > . . .. A
permutation is reverse alternating if a1 < a2 > a3 < . . .. There is a one-to-one
correspondence between alternating and reverse alternating permutations,
viz. a1a2 . . . ad → b1b2 . . . bd where bi = d + 1 − ai. The number Ed of
alternating permutations in Sd is called an Euler number and there is a
remarkable formula, due to André [1], related to these. Namely, we have∑

d≥0Ed
xd

d!
= tan(x) + sec(x).

It seems that to generalize the definition of alternating permutation to
our Sn

d , one ought to consider the descent/ascent at d, and we will do this
later. However, such a definition isn’t altogether satisfying, beause it means
that in the case of S1

d , i.e. essentially the symmetric group Sd, there would
be alternating permutations only for even d and reverse alternating only
for odd d. Moreover, there is something to be gained from the definition
which ignores the descent/ascent at d and thus has the classical case as a
specialization.

Definition 33 An indexed permutation p ∈ Sn
d is weakly alternating if, for

i ∈ [d-1], i is a descent precisely when i is odd.

Thus, 21304211 and 21304210 are both weakly alternating, because we are
ignoring the descent/ascent at d = 4.

This definition allows us to generalize the mysterious formula of André
in a very simple way. For a proof of the following theorem, see [22].

Theorem 34 Let W n
d be the number of weakly alternating permutations in

Sn
d . Then

∑
d≥0 W

n
d

xd

d!
= tan(nx) + sec(nx).
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An interesting formula relating Euler numbers to the Eulerian polynomi-
als states that E2d+1 = (−1)d+1A2d+1(−1) (where Ad(t) is the d-th Eulerian
polynomial) or, in terms of our descent polynomials, E2d+1 = (−1)dD1

2d+1(−1).
We can extend this to the case n = 2.

Theorem 35 Let W 2
d be the number of weakly alternating permutations in

S2
d. Then W 2

2d = (−1)dD2
2d(−1).

Proof: By Theorem 20,
∑

d≥0

D2
d(t)

xd

d!
=

(1− t)ex(1−t)

1− te2x(1−t)
. Substitute −1

for t to get
∑

d≥0

D2
d(−1)

xd

d!
=

2e2x

1 + e4x
. Hence, if i =

√
−1, we have

∑

d≥0

D2
d(−1)

(ix)d

d!
=

2e2ix

1 + e4ix
=

2

e−2ix + e2ix
=

1

cos(2x)
= sec(2x).

But, sinceD2
d(t) is symmetric, withD(d, 2, k) = D(d, 2, d–k), we haveD2

2d+1(−1) =

0, so
∑

d≥0 (−1)dD2
2d(−1) x2d

(2d)!
= sec(2x). Comparing this with Theorem 34

(and the Taylor expansion of sec x and tan x at 0) yields the theorem.

We now turn to a new definition of alternating indexed permutations.

Definition 36 An indexed permutation p ∈ Sn
d is alternating if, for i ∈ [d],

i is a descent if and only if i is even. p is reverse alternating if, for i ∈ [d],
i is a descent if and only if i is odd.

Note that this interchanges the definitions from the classical case.
We now turn to computing the distribution of alternating indexed per-

mutatins. Once again, we will do this not for Sn
d as a whole, but for each

coset Sz.
Consider the following triangle, defined by setting a00 = 1 and, in general,

akd =
∑d−1

i=k a
i
d−1 for d even and akd =

∑k−1
i=0 aid−1 for d odd. The first line is

number 0 and akd is the entry number k from the right in line d, where the
rightmost entry in line d is a0d.

1
1 0

0 1 1
2 2 1 0

0 2 4 5 5
16 16 14 10 5 0
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...

This triangle appears in [2], where it is called the Bernoulli-Euler triangle.
We will show shortly that the numbers on the diagonal edges of the triangle
are the Euler numbers. In [2], Arnold states that each line in the triangle
defines finite mass distributions and he shows, among other things, that the
Euler number Ed is the number of maximal morsifications of the function
xd+1. The following theorem is proved indirectly in [2]. A direct proof is
given in [22].

Theorem 37 Suppose z ∈ Zd
n has d−k positive coordinates. Then akd is the

number of alternating indexed permutations in Sz and ad−k
d is the number of

reverse alternating indexed permutations in Sz. In particular, if d is even
then a0d = Ed and if d is odd then add = Ed, where Ed is the d-th Euler
number.

One can derive several recurrence relations between the entries in the BE-
triangle, but there is a particular one which we will need. If we cut off the
first d+1 lines of the triangle and turn this initial segment upside down, then
we can express the entries akd in the top line as a polynomial in k. Let us say
that we take the first 5 lines and turn them upside down. If we then change
the sign of every entry in lines 3 and 4 from the top, we get the following
triangle

5 5 4 2 0
0 -1 -2 -2

-1 -1 0
0 1

1

which constitutes a difference table, i.e. each entry is the difference between

the entries just above it. More precisely, if we have
a b
c then c = b − a.

This yields a formula for the entries ak4 now sitting in the top line: ak4 =
5 + 0

(
k

1

)
− 1
(
k

2

)
− 0
(
k

3

)
+ 1
(
k

4

)
. In general (see, e.g., [20], Proposition 1.4.2),

the entries on the far left diagonal constitute the coefficients of a polynomial
in k in the basis {

(
k

i

)
| i ∈ N}. Making use of the fact that every other entry

on this diagonal is 0 we get the following result.

Lemma 38 ak2d =

d∑

i=0

(−1)i
(
k

2i

)
a02d−2i and ak2d+1 =

d∑

i=0

(−1)i
(

k

2i+ 1

)
a02d−2i .
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Note that this expresses akd in terms of Euler numbers, since a02d = E2d by
Theorem 37.

Theorem 39 Let An
d be the number of alternating indexed permutations in

Sn
d and Rn

d the number of reverse alternating such. Then

∑

d≥0

An
d

xd

d!
=

cos x+ sin x

cos(nx)
and

∑

d≥0

Rn
d

xd

d!
=

cos((n-1)x) + sin((n-1)x)

cos(nx)
.

Proof: Because 1
cos(nx)

has only terms of even degree, the theorem claims,

among other things, that
∑

d≥0 A
n
2d

x2d

(2d)!
= cos x

cos(nx)
. We will prove this. The

other three cases are similar.
By Theorem 37, and the fact that

∑
E2d

xd

d!
= sec x, sec(nx) =

∑
d≥0 n

2da02d
x2d

(2d)!
,

so cos x
cos(nx)

=
∑

d≥0

(∑d

k=0 (−1)d−k
(
2d
2k

)
n2ka02k

)
x2d

(2d)!
.

Also, An
2d =

∑2d
k=0

(
2d
k

)
(n− 1)2d−kak2d, because ak2d is the number of alter-

nating permutations in Sz ⊂ Sn
2d if z has exactly 2d− k positive coordinates,

and there are exactly
(
2d
k

)
(n− 1)2d−k such z. Hence, we need to show

2d∑

k=0

(
2d

k

)
(n− 1)2d−kak2d =

d∑

k=0

(−1)d−k

(
2d

2k

)
n2ka02k .

Let m = n− 1 and use Lemma 38 to replace this by

2d∑

k=0

(
2d

k

)
m2d−k

d∑

i=0

(−1)i
(
k

2i

)
a02d−2i =

d∑

k=0

(−1)d−k

(
2d

2k

)
a02k

2k∑

i=0

(
2k

i

)
mi .

(1)
Clearly, each side of (1) is a polynomial in m, so it suffices to show that the
coefficient to mj is the same on both sides for each j. Let Lj be the coefficient
tomj in the LHS and let Rj be the coefficient tomj in the RHS. Then we have

L2d−k =
(
2d
k

)∑d

i=0 (−1)i
(
k

2i

)
a02d−2i, so Lj =

(
2d

2d−j

)∑d

i=0 (−1)i
(
2d−j

2i

)
a02d−2i.

Now, using the identity
(
a

b

)(
b

c

)
=
(
a

c

)(
a−c

b−c

)
we get

Lj =

d∑

i=0

(−1)i
(
2d

2i

)(
2d− 2i

2d− j − 2i

)
a02d−2i =

d∑

i=0

(−1)i
(
2d

2i

)(
2d− 2i

j

)
a02d−2i .

(2)
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As for the right hand side we have

Rj =

d∑

k=0

(−1)d−k

(
2d

2k

)(
2k

j

)
a02k =

d∑

k=0

(−1)k
(
2d

2k

)(
2d− 2k

j

)
a02d−2k ,

which agrees with (2) as desired.

Theorem 39 yields the following result, with a proof similar to that of
Theorem 35, where ⌊m⌋ is the largest integer smaller than or equal to m:

Theorem 40 (−1)⌊
d+1

2
⌋D3

d(−1) = A3
d.

4.2 Major index and inversions

Apart from descents and excedances, there are two other statistics of the ele-
ments of the symmetric group Sd that have been extensively studied. These
are the inversion index and the major index of π ∈ Sd. An inversion in
π = a1a2 . . . ad is a pair (i, j) such that i < j and ai > aj . The inversion
index inv(π) of π is the number of inversions in π. The major index maj(π)
of π is the sum of the elements of the descent set D(π) of π.

Foata [8] has constructed a bijection φ : Sd → Sd such that maj(π) =
inv(φ(π)), which shows that maj and inv are equidistributed over Sd. For a
nice description of φ, see [5].

By definition, Foata’s bijection φ has the property that if π = a1a2 . . . ad
and φ(π) = b1b2 . . . bd, then ad = bd. Hence the following.

Remark 41 Let k ∈ [d] and let Ad,k := {π = a1a2 . . . ad ∈ Sd | ad = k}.
Then ∑

π∈Ad,k

tmaj(π) =
∑

π∈Ad,k

tinv(π).

Definition 42 For p ∈ Sn
d , the major index of p is maj(p) =

∑

j∈D(p)

j .

Definition 43 For p = a1z1a2z2 . . . adzd ∈ Sn
d , an inversion in p is a pair

(i, j) such that 1 ≤ i < j ≤ d+ 1 and ajzj <ℓ aizi. The inversion index of p,

inv(p), is the number of inversins in p.
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Note that this differs from the classical definition in that we consider an
indexed permutation in Sn

d to have (ad+1)zd+1
= (d + 1)0 so (i, d + 1) is an

inversion for any i such that zi > 0. For example, 203110 has three inversions,
namely (1, 3), (2, 3), and (2, 4).

Theorem 44 For any z ∈ Zd
n,∑

p∈Sz

tmaj(p) =
∑

p∈Sz

tinv(p). Hence,
∑

p∈Sn
d

tmaj(p) =
∑

p∈Sn
d

tinv(p).

Proof: Suppose z has zi = 0 for exactly k–1 values of i. Let θ : {izi | i ∈
[d+1]} → [d+1] be the bijection which takes the i-th element of {izi | i ∈
[d+ 1]} (in the ordering <ℓ) to i. In particular, θ((d+ 1)zd+1

) = k. Let Ad,k

be as in Remark 41 and define Θ : Sz → Ad+1,k by Θ(a1za1a2za2 . . . adzad ) =
θ(a1za1 )θ(a2za2 ) . . . θ(adzad )k. It follows that i is a descent in p iff i is a descent
in Θ(p) and that (i, j) is an inversion in p iff (i, j) is an inversion in Θ(p).
Hence,

∑
p∈Sz

tmaj(p) =
∑

π∈Ad+1,k
tmaj(π) and

∑
p∈Sz

tinv(p) =
∑

π∈Ad+1,k
tinv(π).

By Remark 41, this implies the desired result.

4.3 Denert’s statistic

In [7], Denert defined a new statistic on the symmetric group Sd. For conve-
nience, we use the equivalent definition of Foata and Zeilberger [10, Theorem
2].

Let exc(π) be the excedance subword of π, i.e. the word ai1ai2 . . . air such
that {i1, i2, . . . , ir} = E(π), and let nex(π) be the non-excedance subword of
π, i.e. nex(π) = aj1aj2 . . . ajs such that {j1, j2, . . . , js} = [d] \ E(π). Also,
extending our definition of inv, for any word w = a1a2 . . . ar such that each
ai is an integer, let inv(w) be the number of inversions in w, i.e. the number
of pairs (i, j) such that 1 ≤ i < j ≤ r and ai > aj. Then Denert’s statistic is
defined by

den(π) =


 ∑

i∈E(π)

i


+ inv(exc(π)) + inv(nex(π)).

As an example, den(326541) = (1+3+4)+inv(365)+inv(241) = 8+1+2 = 11.
Denert conjectured that the joint distribution of the pair (d,maj) was

equal to that of (e, den), i.e. that
∑

π∈Sd
td(π)xmaj(π) =

∑
π∈Sd

te(π)xden(π). In
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[10], Foata and Zeilberger proved the conjecture, and later Han (see [13])
constructed an explicit bijection to prove this. Han’s bijection has the prop-
erty that it fixes the last letter of each permutation π ∈ Sd ([11]). We thus
have the following:

Remark 45 Let k ∈ [d] and let Ad,k = {π = a1a2 . . . ad ∈ Sd | ad = k}.
Then ∑

π∈Ad,k

td(π)xmaj(π) =
∑

π∈Ad,k

te(π)xden(π).

Much as in the previous section, we can use this to extend the results
of Foata and Zeilberger on (e, den). First, however, we need to modify our
definition of excedance.

Definition 46 Fix z = (z1, z2, . . . , zd) ∈ Zn and suppose that z has exactly
k − 1 coordinates equal to 0. Let Θ be as in the proof of Theorem 44.

An ǫ–excedance in p = a1z1a2z2 . . . adzd ∈ Sn
d is an i ∈ [d] such that

θ(aizai ) > i. Moreover, we let E(p) := {i ∈ [d] | θ(aizai ) > i} and ǫ(p) :=
#E(p).

By construction, the ǫ–excedance set E(p) of p is equal to E(π) where
π = Θ(p), so in particular ǫ(p) = e(π). As an example, let p = 4150123023.
Then, applying θ to each letter of p (including the invisible 60), we get
π = 425163, so E(p) = E(π) = {1, 3, 5}. Also, by definition, Θ preserves the
inversions of p and, in particular, it preserves the inversions of exc(p) and
nex(p), respectively, where exc(p) and nex(p) are defined in the obvious way.
Consequently, Θ simultaneously preserves ǫ(p), inv(exc(p)) and inv(nex(p)).
We now define den(p) analogously to the definition of den(π).

Definition 47 For p ∈ Sn
d , den(p) :=


∑

i∈E(p)

i


 + inv(exc(p)) + inv(nex(p)).

It is evident that for p ∈ Sn
d , den(p) = den(Θ(p)) and, hence, we have

∑

p∈Sz

tǫ(p)xden(p) =
∑

π∈Ad+1,k

te(π)xden(π) =
∑

π∈Ad+1,k

td(π)xmaj(π),

the last equality by Remark 45. Since Θ preserves both d(·) and maj(·) (see
the proof of Theorem 44), so does Θ−1 : Ad+1,k → Sz, which yields this:
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Theorem 48 For any z ∈ Zd
n,
∑

p∈Sz

tǫ(p)xden(p) =
∑

p∈Sz

td(p)xmaj(p).

Note that this implies that ǫ–excedances are equidistributed with ex-
cedances.

Corollary 49 The pairs (ǫ, den) and (d,maj) are equidistributed over Sn
d .

4.4 Volumes

In [19], Stanley, answering a question posed by Foata, showed that the Eu-
lerian numbers A(n, k), which are the coefficients of D1

d(t), equal, up to a
factor of d!, the volume of the subspace of the unit d–cube lying between
the hyperplanes {x ∈ Rd | ∑i xi = k} and {x ∈ Rd | ∑i xi = k + 1}. We
generalize this to Dn

d (t) and certain subspaces of nCd.
Fix n ≥ 0 and d > 0. Let Ak be the union (in nCd) of all path simplices

σp such that p has k descents and set xd+1 := 1. Then Ak = {x ∈ nCd | xi >
xi+1 for k values of i ∈ [d]} (see Remark 29). Also, for 0 ≤ k ≤ d, let Sk be
the “slice” of nCd consisting of all points x satisfying

(k − 1)n+ 1 ≤
d∑

i=1

xi ≤ kn + 1.

Thus, S0 = {x ∈ nCd | 0 ≤
d∑

i=1

xi ≤ 1} and Sd = {x ∈ nCd | (d − 1)n + 1 ≤
d∑

i=1

xi ≤ dn}.

Let K := {x ∈ nCd | x1 6= x2 6= · · · 6= xd 6= 1 and 0 < xi < n}. Clearly
nCd \ K has measure zero. We define a map φ : K → nCd by setting
φ(x1, x2, . . . , xd) = (y1, y2, . . . , yd) where

yi =

{
xi+1 − xi if xi < xi+1

n + xi+1 − xi if xi > xi+1.

It is easy to check that the map φ is injective. Namely, if φ(x1, x2, . . . , xd) =
φ(v1, v2, . . . , vd), then xd = vd because either 1 − xd = 1 − vd, and we are
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done, or 1 − xd = 1 − vd ± n, so xd = vd ± n. In that case we either have
xd = n and vd = 0 or vice versa, so x and v lie outside the domain of φ. But
now, similarly, xd−1 = vd−1 etc., so that x = v.

It follows from the definition of φ that, where defined, it can be rep-
resented by the affine linear transformation Φ(x) = n(ǫ1, ǫ2, . . . , ǫd) + Ax,
where

ǫi =

{
0 if xi < xi+1

1 if xi > xi+1

and A is the d× d matrix with entries aij satisfying

aij =





−1 if i = j
1 if i = j − 1
0 otherwise.

A is thus upper triangular with −1’s on the diagonal, so detA = (−1)d.
Hence, φ is volume-preserving and, since it is defined on all of nCd except for a
set of measure 0, its coimage in nCd must have measure zero. It is easily seen
that φ maps Ak ∩K into Sk. Thus, the restriction of φ to φk : Ak ∩K → Sk

is volume preserving and a bijection except for a set of measure 0 in Sk.
Now, since a path simplex σp has volume 1/d!, the volume of Ak equals

D(d, n, k)/d!, whereD(d, n, k) is the k–th coefficient ofDn
d (t), i.e. the number

of indexed permutations in Sn
d with k descents. As a consequence we have

the following:

Theorem 50 vol(Sk) = D(d, n, k)/d!.

Appendix

A new bijection proving the equidistribution of
excedances and descents in the symmetric group

We describe here a new bijection φ : Sn → Sn which satisfies d(π) = e(φ(π)).
For a proof of the following theorem, see [22].

Theorem 51 The following algorithm defines a bijection φ : Sn → Sn such
that d(π) = e(φ(π)): Let π = a1a2 . . . an be a permutation word in Sn. We
define a bijection φ : Sn → Sn by constructing τ = b1b2 . . . bn = φ(π) from π
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as follows: Define a0 := 0 and let k ∈ [n]. If ak > am for some m > k then
ak is in place number ak+1 in τ (i.e. bak+1

:= ak). Otherwise, find the first
(rightmost) number in π which is less than ak (and hence is to the left of ak).
If this number is ai then ak is in place number ai+1 in τ . In particular, this
means that . . . ab . . . is a descent in π if and only if a is in the b-th place in
τ and hence constitutes an excedance in τ .

Example 52 φ(35142) = 54123. 5 goes to the first place and 4 to the sec-
ond because 51 and 42 are descents in 35142. To place 1, since no number
less than 1 appears after 1 we trace back until we hit 0. The successor of 0
is 3 so 1 goes to the third place. 2; trace back to 1, whose successor is 4 so 2
goes to the fourth place. 3 has smaller numbers to its right so 3 goes to the
fifth place, 5 being the successor of 3.

The following is a straightforward consequence of Theorem 51.

Corollary 53 Let π = a1a2 . . . an and let τ = φ(π) = b1b2 . . . bn. Suppose
that τ fixes i, i.e. bi = i, and let k be such that ak = i. Then am > ak for
any m > k and ak−1 < ak. In particular, if an = i then am 6= m for any
m > i.
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[1] D. André: Développements de sec x et de tang x, C.R. Acad. Sci. Paris
88 (1879), 965-967.

[2] V.I. Arnold: Bernoulli-Euler updown numbers associated with function
singularities, their combinatorics and arithmetics, Duke Math. J. 63 No.
2 (1991), 537-555.

[3] A. Björner: Shellable and Cohen-Macaulay partially ordered sets,
Trans.Amer. Math. Soc. 260 (1980), 159-183.

27



[4] A. Björner: Topological methods, a chapter in ”Handbook of combina-
torics” (R. Graham, M. Grötschel and L. Lovász, eds.), North-Holland
(to appear).

[5] A. Björner and Michelle Wachs: Permutation statistics and linear ex-
tensions of posets, J. Combin. Theory Ser. A 58 (1991), 85-114.

[6] F. Brenti: Unimodal, log concave and Polya frequency sequences in
combinatorics, Memoirs Amer. Math. Soc. 413 (1989).

[7] M. Denert: The genus zeta function of hereditary orders in central simple
algebras over global fields, Math. Comp. 54 (1990), 449-465.

[8] D. Foata: On the Netto inversion number of a sequence, Proc. Amer.
Math. Soc. 19 (1968), 236-240.

[9] D. Foata and M.-P. Schützenberger: Théorie géométrique des polynômes
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