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Abstract

The 2—-weak vertex-packing polytope of a loopless graph G with d vertices is the
subset of the unit d—cube satisfying z; + z; < 1 for every edge (z,7) of G. The
dilation by 2 of this polytope is a polytope P with integral vertices. We triangulate
P with lattice simplices of minimal volume and label the maximal simplices with
elements of the hyperoctahedral group By. This labeling gives rise to a shelling of
the triangulation P of P, where the h-vector of P (and the Ehrhart A*-vector of P)
can be computed as a descent statistic on a subset of By defined in terms of G. A
recursive way of computing the h—vector of P is also given, and a recursive formula
for the volume of P.

1 Introduction

Let G be a graph (with no loops), d the number of vertices in (7, and label the
vertices of G by the integers 1,2,...,d. The vertez-packing polytope of G is the
d-polytope V(G) in R? defined by the following inequalities:

1<i<d, (1)
i+, + -+, <1, if {iy,i2,.. ., 0} is a clique of G. (2)

These polytopes have been studied by various authors, mostly from the linear
programming point of view (for some background, see [4] or [8]). A simpler polytope,
related to V((G), is the 2-weak vertex-packing polytope of G, which we denote by
W(G) and which is defined by these inequalities:

: (3)
: (4)
i+ x; <1, if (4,7) is an edge of G. (5)
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If G is a bipartite graph, then W(G) and V(&) coincide.

It is easily seen that the inequalities given by (4) and (5) and those of the
inequalities (3) for which ¢ is an isolated vertex of ¢ are linearly independent, and
thus these inequalities define the facets of W(G). We will show that the vertices of
W(G) have coordinates in {0,1,1}. Hence, if we dilate W(G) by 2, i.e. take the
image of W(G) under the map f : R? — R? defined by f(z) = 2z, then we get a
polytope P(G) whose vertices are integral, more precisely {0, 1,2}-valued. We call
the polytope P(G) the extended 2-weak vertez-packing polytope of G. 1t is clearly
defined by

<2, 1<i<d, (6)
0<z, 1<i<d, (7)
i+ x; <2, if (1,7) is an edge of G. (8)

This paper deals with the structure of P(G). We triangulate P((G) in a certain
systematic way and label the maximal simplices in the triangulation, which we
denote by P, with elements of the hyperoctahedral group By. This labeling allows
us to shell P in such a way that we can compute the h-vector of P(G) as a descent
statistic on a subset of By determined by G. Moreover, the triangulation is such
that its h-vector equals the Ehrhart h*~vector of P(G). We give a decomposition of
P into maximal simplices, whose intersections with other maximal simplices we can
describe explicitly. We also give a recursive formula for computing the h-vector of
P(G), by descending to those facets of P(G) which lie on the boundary of 2C'? where
C? is the standard unit d-cube (these facets are extended 2-weak vertex-packing
polytopes in their own right). A simplified version of this recursion gives a simple
recursive formula for computing the volume of P(G).

2 Preliminaries

2.1 Ehrhart polynomials

Let P be a d-dimensional polytope (or simplicial complex (see section 2.2)) in R”
with integral (or lattice) vertices, i.e. v; € Z™ for all vertices v; of P. For k € N
let kP = {kx |z € P}, i.e. kP is the (lattice) polytope obtained by dilating P by a
factor of k.

For £ € N define the function
i(Pk)=#{z e R" |z € kPNZ"}.

Thus, (P, k) is the number of lattice points contained in kP. By Cor. 4.6.28 in
[11], ¢(P, k) is a polynomial in k of degree d, called the Ehrhart polynomial of P.

Now define the generating function



k>0
By Thm. 2.1 in [10], we have
h*(P,t)
E(P.O) = a—pa

where h*(P,t) is a polynomial of degree at most d with non-negative integer coeffi-

cients, called the Fhrhart h*-polynomial of P. Its coeflicients are the coordinates of
the Ehrhart A*-vector h*(P) of P.

2.2 Simplicial complexes

An abstract simplicial complex is a nonempty collection K of sets such that if F' € K
and G C F then G € K. An element of K is called a face of K. We will be mostly
concerned with the geometric realization of simplicial complexes (for definitions and
basic properties, see [7]) and we will, by abuse of notation, not distinguish between
a simplicial complex and its geometric realization.

A simplicial complex K is pure if all its maximal faces have the same dimension
d = dim(K). If K is a pure simplicial complex of dimension d, then a facet of K
is a d—face, i.e. a d—dimensional face, of K. In other words, a facet is a maximal
simplex of K. When a complex K triangulates a polytope P, the facets of K are
d—dimensional, but the facets of P have dimension d — 1. This can cause confusion,
which we will try to avoid in subsequent sections by referring to the facets of K as
maximal simplices.

The h—vector h(K) = (ho, hi,...,hq) of a simplicial complex K of dimension
d-1 is defined as follows: Let f; = f;(K) be the number of i-dimensional faces in
K, where we set f_; = 1 (corresponding to the empty set), and define h(K) =
(ho, b1, ..., hq) by setting

d

Zfi_l(;v — l)d_i = Zhixd_i. (9)

=0

We define the h-polynomial h(K,t) of K by h(K,t) = hg+ kit + -+ + hqt®. For

further information about h—vectors, see [13].

Let K be a pure simplicial lattice complex of dimension d. If all facets of K have
volume 1/d! (see section 2.4) then we say that K is primitively triangulated. The
following theorem is essentially a consequence of Cor. 2.5 in [10], whose conclusion
is expressed in greater generality in Thm. 2 in [1].



Theorem 1 Suppose K is a primitively triangulated simplicial lattice complex. Then
h*(K,t) = h(K,t), where h*(K,t) is the Ehrhart h*—polynomial of K. [

For certain pure simplicial complexes K the coefficients of A(K, 1) can be inter-
preted in a way that partitions the facets of K according to how they intersect other
facets. We will briefly review this now. For further information see [2] and [3].

Definition 2 Let K be a finite pure simplicial complex of dimension d. If F is
a face of K, let F be the complex consisting of F' and all its faces. An ordering
Fi, Fy, ..., F, of the facels of K is called a shelling if, for all k& with 1 < k < n,
Fipn UFl is a nonempty union of (d — 1)~faces of Fy,. A complex K is said to be

i<k
shellable if there exvists a shelling of K.

That is, a complex is shellable if it can be built up by adding one facet at a
time in such a way that, for & > 1, the intersection of each F'; with the complex
generated by the previous F;’s is a nonempty union of (d-1)-faces of FJ.

As it turns out, the h—vector of a shellable complex can be computed from the

shelling. The following theorem is essentially due to McMullen [6].

Theorem 3 Let Iy, Fy, ..., F, be a shelling of a d—dimensional complex K and let
c(k) be the number of (d — 1)-faces of F}, contained in Ufi. Then we have the

i<k
following formula for the h—polynomial of K :
h(K 1) =Y 17, u
k=1
Thus, given a shelling Fy, Fy, ..., F, of a simplicial complex K, we can compute

the h—polynomial h( K, t) of K via Theorem 3. That is, the k—th coefficient of h( K, 1)
equals the number of F; with ¢(i) = k. We then say that a facet F; of K contributes
to the k—th coefficient of h(K,t) if ¢(i) = k.

If K is a simplicial complex and p a vertex not in K, then the cone with apex p
over K (or with base K), denoted p* K, is the simplicial complex whose i—faces are
the i—faces of K and {pU f | f an (i — 1)—face of K'}. Geometrically, a cone can be
defined as follows. If K is a (d — 1)-dimensional simplicial (or polytopal) complex
in R” and p is a point in R” such that each ray emanating from p intersects K in
at most one point, then the cone p * K consists of K and p and the new i—faces, for
1 <i < d, obtained by taking, for each (i — 1)—face f in K, the union of all line
segments connecting p to points in f.

The following theorem is straightforward to prove from equation (9).
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Theorem 4 Suppose the simplicial compler K ts a cone with apex p over B, i.e.

K =px B. Then h(K,t) = h(B,1). [

2.3 The hyperoctahedral group

The hyperoctahedral group By is the group of symmetries of the d—dimensional cross
polytope (or hyperoctahedron) defined as the convex hull of the points +¢; where ¢; is a
standard basis vector in R?. We represent the elements of the hyperoctahedral group
By by signed permutation words, i.e. ordinary permutation words in which each
letter has a sign. To simplify the notation, we write 1, 2, 3 etc. for —1, =2, —3, and
simply 1,2,3 etc. for +1,42,43. For example, B, = {12,21,12,21,12,21,12,21}.
As we will not be concerned with ordinary permutations, we simply call the
elements of B; permutations. When we refer to the letters in a permutation, we
regard them as integers (with the sign incorporated) and order them as such, i.e.

0 3<2<1<0<1<2<3 - Let [d] :={1,2,...,d}.

Definition 5 A descent in 7 € By is an i € [d] such thal one of the following holds:
1)1 <d and a; > a;41,
2)i=d and ag > 0.
The number of descents in © € By is des(w).

For any subset S of By, the descent polynomial of S is D(S,t) := thes(”).

TES

For example, the descents of 2341 are 1,2 and 4, so des(2341) = 3. If § =
{321,123,213} then D(S,t) =1 + 2t

For more information on descent (and other) statistics of By, see [9] or [14].

2.4 Volumes

When we talk about volume in R? we mean the usual d-dimensional volume, which
we denote voly(+). If S is a subset of a d-dimensional coordinate subspace of R,
then by voly(S) we mean the volume of S in that subspace. If S is a union of such
subsets S; then by voly(S) we mean the sum of the volumes of the S;. In particular,
a polytope P of dimension less than d has vol,(P) = 0. For convenience, we make
the following definition.

Definition 6 If P is a d-dimensional polytope or simplicial complex in R"™ such
that voly(P) is defined, then the normalized volume of P is Nvol(P) := d! - vol,(P).
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Hence, for any polytope (or simplicial complex) P of positive dimension, Nvol(P)
is positive. The rationale behind this definition is that the least volume a lattice
d—simplex can have is 1/d!. In particular, the normalized volume of a primitively
triangulated complex equals its number of maximal simplices.

3 Main Theorems
The following proposition is intuitively obvious, but we give a proof anyway.

Proposition 7 Let p be a point in the polytope P and let Py be the union of those
facets of P which do not contain p. Then P is a cone with apex p over Py.

Proof: If p is contained in the interior of P this is trivial, and the same is true if
the dimension of P is 1. Also, by convexity, any ray from p can intersect Py in at
most one point.

Assume, then, that p lies in some facet of P and dim(P) > 2. Let x be a point
in P. It suffices to show that x lies on a line segment between p and a point q € (¢
for some facet G C Pp. Let R be the extension beyond x of the line segment px
and let g be the point on R such that every point on R not on pq lies outside P.

It is clear that if x does not belong to any of the facets of P containing p then
neither does q, by convexity, and we would be done. Suppose, therefore, that x
and p belong to the same facet F' of P. We now proceed by induction, so we may
further assume that q belongs to a (d — 2)—face f of F such that p ¢ f. Let G be
the unique facet of P different from F' and containing f. We claim that G' does not
contain p, which will complete the proof. If G did contain p, then G N F' would
contain the (d — 1)-dimensional set p * f, which is absurd. |

Throughout this paper, given a graph G, P(G) will be the extended 2-weak
vertex-packing polytope of G.

It is clear from the definiton of P(G) that it is a subset of 2C%, the dilation of
the unit d—cube by 2.

Theorem 8 Lel G be a graph and let P'(G) = P(G) N 9(2CY), i.e. P(G) is the
union of those facels of P(G) which lie on the boundary of 2C%. Letp = (1,1,...,1).
Then P(G) =p * P'(G).

Proof: The facets of P(G) are defined by the inequalities (7) and (8) and those of
the inequalities (6) for which ¢ is an isolated vertex in G (or, more precisely, by the
corresponding boundary equalities). Hence, those facets of P(G) which do not lie
on §(2C?) are precisely those which are defined by x; 4+ x; = 2 for some (7, 7). Every
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such facet contains the point p and no other facets of P(G) do. Hence, by Prop. 7,
P(G) =p*P'(G). |

To triangulate P(G) we first triangulate 2C? in the following way. 2C? is em-
bedded in R? so that its vertices are all points whose coordinates are either 0 or 2.
In particular, its center (of symmetry) is the point p = (1,1,...,1). We subdivide
2C? into the 2% unit cubes all of whose vertices are lattice points. Each of these
small cubes contains p and a unique vertex which is a vertex of 2C'*. We label each
small cube by that vertex of 2C? which it contains. As an example, the standard

unit d-cube is labeled by 0 = (0,0,...,0) and denoted cp.

Next, we triangulate each of these small cubes. Let ¢, be the small cube labeled
by z. Then every maximal simplex in the triangulation of ¢, contains p and z and
is defined as the convex hull of a path along edges of ¢, from p to z, as follows.

Let po = p,pP1,P2,...,P4 = Z be a sequence of vertices of ¢, such that p, =
pPir—1 £ e; where ¢; is the vector (0,...,0,1,0,...,0) with a 1 in the j—th place
and 0’s elsewhere. It follows that in the sequence of p;’s the i-th coordinate must
change precisely once, from 1 to z;, because we start out from p = (1,1,...,1) and
z = (21, 29,...,24) is a vertex of 207, so z; € {0,2} for each 1.

The points p; are easily seen to be geometrically independent and thus they
are the vertices of a d-dimensional simplex, namely their convex hull. It is also
clear that the intersection of any two maximal simplices is the convex hull of their
common vertices, so this is indeed a simplicial complex. (In the case of the unit
d—cube, this triangulation is well known. See, for example, [12]).

Such a sequence of vertices defining a maximal simplex can be coded by a per-
mutation in the hyperoctahedral group B;. Namely, we define 7 = ajay---aq by
setting a; = k if p; — pic1 = er and a; = —k if p; — pi-1 = —ei. For example,
the sequence (1,1,1),(0,1,1),(0,1,2),(0,0,2) of points in ¢(,9,2) corresponds to the
permutation 132. Conversely, every m € B; determines a unique path from p to a
vertex z of 2C% and hence a unique d-simplex, which we denote by o, contained in
¢z The number of distinct paths from p to z is d!, and the following lemma is now
immediate.

Lemma 9 Let {m; | 1 <1 < d!} be the permutations labeling the mazimal simplices
in a cube ¢,. Then each integer k in [d] appears with the same sign in every ;.
More precisely, the sign of k € [d] in such a permutation is + or — according as the
k-th coordinate of z is 2 or 0. Conversely, if each k € [d] appears with the same
stgn in two permutations m and 7, then o, and o, belong to the same cube ¢y. [

For example, the paths in the cube ¢ ) are (1,1) — (1,2) — (0,2) and (1,1) —
(0,1) — (0,2), corresponding to the permutations 21 and 12, respectively.
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Proposition 10 The collection {o, | # € Ba} covers 2C%. Any two of these sim-
plices are isometric, in particular each has volume 1/d! and hence Nvol(o,) =1 for
each .

Proof: Given a cube ¢,, there is an orientation-preserving isometry which fixes
(1,1,...,1), takes z to 0, and each vertex of ¢, to a vertex of ¢y (there are many
such isometries, of course). Such an isometry sends o, C ¢, to some o, C co.
Given o, C ¢y, a suitable permutation of the coordinate axes in R? sends o, to
Ou, 80 0, and o, are isometric. If o, C ¢o then all the letters of 7 are negative,
say T = —aj; — ag--- — aq. It follows from the definition of o, that o, = {x =
(x1,22,...2q) € R¢ |0 < 2y, < 1y, < -+ < 1, < 1}. Clearly, every point
in ¢p is contained in a subset defined by some 7. There are d! maximal simplices
0r C ¢o and the intersection of any two distinct such has dimension at most d — 1,

so voly(o,) = 1/d!. |

Thus the collection {0, | 7 € By} triangulates 2C%. We denote this triangu-
lation by 2C¢. We can now give a succinct characterization of the permutations

corresponding to the maximal simplices of 9C contained in P. First a definition.

Definition 11 Let G be a graph. The sel of permissible permutations with respect
to G is II(G) = {m € By | oo C P(G)}. A permulation 7 is permissible w.r.t. G if
m € II(G).

Theorem 12 A permutation m € By is permissible w.r.t. G if and only if it satisfies
the following condition:

If (i,7) ts an edge in G and +i appears in w, then —j must precede +1i in .

Proof: Suppose that po = p,p1,p2,---, P4 = Z is a sequence of points defining a
maximal simplex o, C P(G). If +i appears in 7 and is not preceded by —j, then
some of these points will have coordinates z; = 2 and z; = 1, so z; + z; = 3, which
is not allowed if (i,7) is an edge in G. Conversely, a permutation satisfying the
condition determines a maximal simplex o, which is the convex hull of points whose
coordinates satisfy the defining inequalities of P(G). [

Suppose K is a simplicial complex and P a polytope (or any subset), both
embedded in R”. By KNP we mean the subcomplex of K contained in P, assuming
that this is well defined (which will always be the case here).

For the remainder of this section, fix a graph G and let P denote its extended
2—weak vertex- packmg polytope. We define P to be the triangulation of P induced
by the triangulation 207 of 2C'4. That i is, ’P PN207. We need to show, of course,
that this actually triangulates P, i.e. that P is well defined.



Proposition 13 Lel o, be a maximal simplex in ¢,. If P intersects the interior of
oy, then o, CP. Hence, P =2C*NP is a triangulation of P.

Proof: Let po,p1, P2, .-, Pa be the sequence of points defining o, and suppose
(1,7) is an edge of G. Let m = ajay---aq and let aj be the first occurrence in 7
of either +i or 5. If ax > 0 (so ax equals 47 or +7) then every one of the points
P satisfies z; + z; > 2 and if a; < 0 then all of the p,, satisfy z; + z; < 2. In
either case, the convex hull of the p,,’s, namely o, lies entirely on one side of the
hyperplane H;; defined by z; + ; = 2. Hence, o, must lie entirely on one side of
each of the hyperplanes defining P, so either o, C P or else P intersects o, only in
the boundary of o. [

Remark 14 By Proposition 10, the iriangulation P of P is primitive . Hence,
Nvol(P) = #11(G) and h*(P,t) = h(P,1).

Since P is triangulated by the simplicial complex ﬁ, each vertex of P must be
a vertex of a simplex in P, and thus have integral coordinates, since the vertices of
the simplices o, are clearly integral. But we can do better than this. Namely, we
can completely characterize all vertices of P.

Theorem 15 Let v = (vy,v2,...,v4) be a point in P with integral coordinates (so
v; € {0,1,2} for all i) and let S = {i € [d] | v; = 1}. Let Gs be the subgraph of G
induced by S. Then v is a vertex of P iff S =0 or each connected component of Gs
contains an odd cycle.

Proof: Suppose S # @ and that some component of (s contains no odd cycle.
Call this component ' and let T' be its vertex set. Then C' is bipartite and thus
two-colorable, so we can color the vertices of C' with the numbers 0 and 2 in such
a way that no two adjacent vertices get the same color. Let ¢(i) be the color of i.
Define x = (x1,22,...,2q4) and y = (y1,y2,...,44) by @i = y; = v; if 1 € T and
zi=c(i), yi=2—c(i)if i € T. Then x,y € P and v = L(x +y), so V is not a

vertex of P.

Conversely, suppose S = {J or that every component of (5 contains an odd cycle.
If S = 0 then v is a vertex of 2C% and thus of P. Assume then that S # () and
that every component of Gg contains an odd cycle, so no component of Gg is two-
colorable. Assume also that v is not a vertex of P. Then we must have a,b with
0 <a,b<1and a+ b =1 and distinct points x,y € P such that ax + by = v.
It is easy to see that z; = y; = v; for each ¢ such that v; € {0,2}. Hence, since
x and y must be different from v, there must be an ¢ such that z;,y; # v, = 1.
Hence, z; > 1 or y; > 1, since otherwise ax; + by; < 1 = v;. Assume, without
loss of generality, that x; > 1. Now, : belongs to some component of GGs and that



component contains an odd cycle, so there is a path beginning at : and traveling
through the entire cycle. Assume, w.l.o.g., that the vertices in this path are labeled
(in order) by ¢, + 1,...,7 + m. Since z; > 1, we have z;4; < 1, as the vertices
x; and x4, are adjacent, so z; + x;31 < 2. But then y;417 > 1 since otherwise
atir1 + by;y1 < 1. This implies that y;12 < 1, so x;32 > 1 and the argument can be
repeated to show that z;4, > 1 iff r is even. But this amounts to a two-coloring of
the path, including the odd cycle, which is a contradiction, so v is indeed a vertex

of P. [ |

Our goal is to find a shelling of P. To that end, we order the permutations in By
lexicographically, i.e. a permutation @ = ajay - - - ag precedes 7 = byby -+ - by if a; < b;
for the first 1 at which 7 and 7 differ. Abusing notation, we use < to denote this
ordering of the elements of By. For example, 231 < 321 and 231 < 231.

We will show that the ordering of maximal simplices in P induced by the lexi-
cographic ordering of their corresponding permutations is a shelling of P. We say
that two d-simplices intersect mazimally if they have a (d — 1)-face in common.

Lemma 16 Suppose o, C ¢, N ﬁ,where T = aiay---aq, and suppose thal 1 is a
descent in w. If 1 is an internal descenl in m, i.e. a; > ajy1, for some 1 < d—1, then
o C ¢z NP, where 7' = ayay -+~ ajp1a;---aq. If i = d, i.e. ag > 0, then o C P,
where 7' = ajay -+ — aq. In either case, ©’ < m an/cg or and o intersect maximally.
Moreover, if two mazimal simplices o, and op in P intersect mazximally, then m and
7' either differ only by a single transposition or only by the sign of their last letter.

Proof: If 1 < d, so 7’ = ay---a;y1a; - - aq, then, by Lemma 9, o, C ¢,. If both «a;
and a;41 are negative, then there are no restrictions on the order in which they can
appear in a permissible permutation. If both a; and a;41 are positive, then, since
7 is permissible, x4, + #4,,, < 2 can’t be a defining inequality of P, so again there
are no restrictions on the order in which a; and a;4; can appear in a permissible
permutation. Since 7 is a descent, the only remaining possibility is a; > 0 and
a;+1 < 0. That implies that 7' must be permissible if 7 is.

If i = d, so ag > 0, then clearly 7’ = ajaq - -+ — ay is permissible if 7 is.

Now, regardless of whether ¢ < d or ¢ = d, suppose that pg,p1,...,pa is the
sequence of points defining o,. Then the sequence defining o, is qo,qi,--.,q4,
where q; = pj, except for j = ¢. Hence, o, and o intersect in the (d — 1)—face
defined by the convex hull of the points po, p1,. .., Pi=1, Pi+1, - - - Pd (Where possibly
1 =d).

If two maximal simplices intersect maximally, then their defining sequences of

points differ by just one point. It is then straightforward to check that their corre-
sponding permutations can differ only as described. [
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Theorem 17 Order the mazimal simplices in P so that o, precedes o if T < T.
This ordering is a shelling of P.

Proof: lLet o, be a maximal simplex in P. If 7 is the (lexicographically) first

permutation in II(G) then there is nothing to prove. Otherwise, we must show that

ar N U o, is a nonempty union of (d — 1)-faces of o,. It suffices to show that if o
T N

intersects a maximal simplex o, C P and o, precedes o, then o, N o, isAcontained

in some (d — 1)-face f of o, such that f = o, N on for some o C P with o

preceding o,.

Suppose 0,0, C P and that o precedes o,, so 7 < m. Let 7 be the first place
where © and 7 differ. If 7+ = d then o, and o, intersect maximally, by Lemma
16, and we are done. Assume therefore that + < d. Let 7 = ajay---a4 and 7 =
aiay - a;_1b; -+ - by. Let k be the first descent in 7 after 2 — 1. Such a & must exist,
because otherwise we would have a; < a;41 < --+ < ag < 0 so that m was the first
permutation in By beginning with ajay - - - a;—1, contradicting 7 < 7.

Let po, p1, - - ., Pa be the sequence of points defining o..We claim that py € o,. If

o, did contain p; then we would have {a1, as,...,ar} = {b1,ba,...,bs}, in particular
{ai,aiy1,...;ar} = {bi,biy1,...,br}, so k > 1. But then, since k was the first descent
in 7 after ¢+ — 1, so that a; < a;41 < -+ < ax, we must have b; > «q;, contradicting

the assumption 7 < 7, so py € o,.

Ifk <d let " =ay - agprag---ag. Then 7' < 7 and o, N o is the convex hull
of po,P1;-- s Pk=1; Pk+1; - - -, Pa- By Lemma 16, o and o intersect maximally and
o C P. Moreover, since py € 0, 0, N0y C 0x N 0o, as desired.

If k = d, then ag > 0. Let 7’ = arag - —ag. Then 7’ < 7 and, by Lemma 16, o,
and o, intersect maximally and o, C P. Since pg € o, we have o, No, C o, Nom,

as desired. [ |

Theorem 18 The h—polynomial 0f7/5 equals the descent polynomial of the set of
permissible permutations with respect to G. That is, h(P,t) = D(II(G), t).

Proof: By Theorem 3, we need to show that for each descent in = € II(G) there
is a unique maximal simplex o, € P such that o, and o, intersect maximally and
such that 7 < 7. First suppose that 7 is an internal descent in m, i.e. 1 <1 <d—1
and let @ = ajaz- - - aq, so a; > a;11. By Lemma 16, two maximal simplices o, and
o, in the same cube ¢, intersect maximally if and only if 7 and 7 differ by a single
transposition. Let 7 = ajay--- @410, - ay. Then 7 precedes m, o, C P and o, and
o, intersect maximally. Conversely, if o, and o, in ¢, intersect maximally then they
differ by a single transposition and if 7 < 7 then 7 has a descent between the two
letters involved in that transposition.

The only other maximal simplices o, can intersect maximally are those belonging
to other cubes than ¢,. By Lemma 16, if o, is such a simplex and 7 = aya, - - - aq,

11



then 7 = ayaqy -+ — ayq, so, for 7 to precede m, we must have ag; > 0, i.e. d is a
descent in . Conversely, if d is a descent in © then ay > 0, so if 7 = ajay--- — ay
then 7 < m, 0, C P and o, and o, intersect maximally. |

4 Applications

As we shall be much concerned with that part of the boundary of P which is con-
tained in 9(2C%), we make the following definition. (Unless otherwise specified, P

and P have the same meaning as before).

Definition 19 B := PN d(2C?) and B:=Pn d(2C%). A facet of B is a facet of P

contained in B.
Theorem 20 h(P,t) = h(B,1). Hence, h*(P,t) = h(B,t) = h*(B,1).

Proof: P is a cone over [5’: which yields the equality of A—polynomials, by Theorem
4. The latter two equalities are then implied by Theorem 1 and the fact that P (and

hence g) is primitively triangulated. [

Corollary 21 voly(P) = vols—1(B). Equivalently, Nvol(P) = Nvol(B).

Proof: Nvol(P) equals the number of max1mal simplices in 77 Wthh in turn equals

the number of maximal simplices in B since P is a cone over B. |

Corollary 21 yields a recursive formula for the volume of P, because each facet
of B is an extended 2-weak vertex-packing polytope. More precisely, the facet of B
obtained by setting z; = 0 (which we denote B,,—¢) is the extended 2-weak vertex-
packing polytope of the graph obtained by removing x; from G. If z; is an isolated
vertex of ¢ then B,,—, is isometric to B,,—o (since then P = P,,—¢ x [0,2]), but
otherwise B,,—, has dimension less than d-1 and thus vol;_q(B,,=2) = 0.

Ifd=a1+a2+---+ak,let( d

21,02,..,Qk

) be the multinomial coefficient defined by

( d ) _ d!
A1 ,A2 4000y A L al!ag!---ak!'

Abusing notation, we will, in what follows, write Nvol(() instead of Nvol(P(G)),
where (¢ is a graph and P(() its extended 2—-weak vertex-packing polytope.

Theorem 22 Let C1,Cy, ..., Ck be the connected romponpnfe of G, with a; = #C;
for each i, and d = #G. Then Nvol(G) = <a1,a2, ,ak) I_L L Nvol(C;). In particular,
if G has an isolated vertexr x and GG, is the graph obtained by removing x from G,
then Nvol(G) = 2 - d - Nvol(G,,).

12



Proof: For the sake of simplicity, assume that G has only two connected compo-
nents, Cy and Cy, with vertices zy,29,..., 2, and 41, Tpmgo, ..., T4, respectively.
A permutation 7 is permissible with respect to GG if and only if the subword of 7
corresponding to each component is permissible with respect to that component.
Hence, given permutations m; € TI(C}) and m € TI(Cy)Y, every “shuffling” of m
and 7y is a permissible permutation with respect to GG. That is, we can select any
m positions out of 1,2,...,d and place the letters of 71, preserving their order, in
these positions and the letters of my, preserving their order, in the remaining d — m

positions. This means that #1I(G) = (Ti) - #I(CY) - #1(C3) and the argument
d
nomial coefficient ( 4 ) |
Q1,244 QK

obviously generalizes to any number of components with ( ) replaced by the multi-

In lieu of the preceding theorem, we can now restrict our attention to connected
graphs, in particular to graphs without isolated vertices.

Theorem 23 Let G be a graph withoul isolated vertices, #G = d, and let (. denote
the graph obtained by removing the vertex = from GG. Then

Nvol(G) = ZNVOI(Gx).

rzeG

Proof: As pointed out above, if G has no isolated vertices then all the facets of
B = P N2C% are of the form B,,—o and so B = UxEG B;—o. Clearly Nvol(B) =
Y wec Nvol(B.—g), which, together with Corollary 21, yields the theorem. [

We will now give a few examples of how one can use the recurrence afforded
by Theorems 22 and 23 to compute the volume of extended 2-weak vertex-packing
polytopes. To get the recursion off the ground, observe that if G consists of a single

vertex, then P(G) = [0,2] C R, so Nvol(G) = 2.

Example 24 Nvol(e e e)=2-Nvol(e e)+ Nvol(e )=
2-2-NV01(o)—I—(f)-(Nvol(o))2:8+2-22:16.

. .
Example 25 Nvol(e e e)=2-Nvolle e e)+2-Nvol(e e)=
2-16+6-Nvol(e e)=32+6-4=>56.

Example 26 If G, is the graph ¢ e ... e e with d vertices, so Gy is
the comparability graph of the fence poset on elements zq,..., x4 (with relations
T < Ty > w3 < x4 > ---), then it is well known (see [12]) that the volume of

'We are being a little sloppy with the notation here.
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the 2-weak vertex-packing polytope W(Gy) of Gy is given by the d-th coefficient
of the Taylor series of tan z + secz. We can compute the corresponding result for
P(Gyq) in the following way. Using Theorems 22 and 23, we get this recurrence for
Aq = Nvol(Gy): For d > 1, A4 = Z?:o (f) A; - Ag—; and hence Y o, Ad_i_l% =

2
(Zd>0 Adﬁ) . Setting Fl(z) = > 50 Ad% yields F'(z) — 1 = (F(z))?, which,
together with F(0) = 1, has the unique solution F'(z) = tan(2z) + sec(2z).

We give one example of how one can compute h(ﬁ(G), t) from II(&).

Example 27 Let K, be the complete graph on d vertices. Then TI(K;) consists of
all permutations m = ajay---ag € By such that a; < 0 for all ¢ except, perhaps, for
i = d. Let TI_ be the set of permutations in II(G) all of whose letters are negative,
and let TI; be the set of those permutations in II(G) whose last letter is positive
(but all others negative). It is easy to see that D(II_,¢) equals the usual descent
polynomial of the symmetric group 54, consisting of all permutations of the letters
{1,2,...,d} (no signs involved and never a descent at d). This polynomial is well
known and called the d-th Fulerian polynomial (see, e.g. [11]) and often denoted
by Aq4(t).2 In fact, A4(t) equals the h—polynomial of our triangulation of co. As
for 11;, we see that there is always a descent at d, never a descent at d — 1, and
the first d — 1 letters in a @ € Il behave just like a permutation in S;—;. Hence
each permutation in II; corresponds to a permutation in S4_1, but has an extra
descent, namely the one at d. There are d possible choices for the last letter of
m € I} and the descent polynomial of Il is thus equal to d - tA;_1(t). Hence,

~

h(P(Ky),t) = Ag(t) +d - tAg_1(1).

Note also that Nvol(Ky) = #II(K;) = 2-d! This volume was previously computed
by Lee and Morris [5].

Finally, we record, without proof, two theorems which give a recursive algorithm
for computing h(P,t). For proofs, see Theorems 38 and 35 in [15], which also
contains many examples and details not found here. Recall that [d] = {1,2,...,d}.

Definition 28 Lel GG be a graph with vertex set [d] and P defined as usual in terms
of G. Let S C [d]. Then Ps:={x=(21,29,...,24) € P |2, =0 if1 € S}.

That is, Pg is isomorphic to P((Ggs), where Gg is the subgraph of G induced by
[d]\ S. We also define Pg similarly, i.e. Ps:=P N Ps.

Theorem 29 Let G be a graph with vertex set [d] and no isolated vertices. Then
h(ﬁ, 1) = Z h(ﬁg, t)(t — 1)#5=1 where S ranges over all nonemply subsets of [d). [
S

ZUsually, though, A4(#) is defined so that D(TT_,¢) = t=1A4(t).
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Theorem 30 Let G be a graph with d — 1 vertices and denote by G’ the graph
obtained by adding to G' an isolated vertex. Suppose h(P(G),t) = ag + a1t + - -+ +
ayg_1t*. Then h(P(G"),t) = b+ byt +--- + byt?, where by, = (2k + 1V)ag + (2d — 2k +

1>(lk_] . .
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