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Abstract

Let G be a simple graph on d vertices. We define a monomial ideal K in
the Stanley-Reisner ring A of the order complex of the Boolean algebra on d
atoms. The monomials in K are in one-to-one correspondence with the proper
colorings of G. In particular, the Hilbert polynomial of K equals the chromatic
polynomial of G.

The ideal K is generated by square-free monomials, so A/K is the Stanley-
Reisner ring of a simplicial complex C. The h-vector of C is a certain transfor-
mation of the tail T (n) = nd − χ(n) of the chromatic polynomial χ of G. The
combinatorial structure of the complex C is described explicitly and it is shown
that the Euler characteristic of C equals the number of acyclic orientations of
G.

1 Introduction and preliminaries

Let G be a simple graph on d vertices. In this paper we construct a monomial ideal K
in the face ring (Stanley-Reisner ring) A of the order complex of the Boolean algebra
on d atoms, which is isomorphic to a cone over the first barycentric subdivision of
a (d − 1)-simplex. The monomials in K are in one-to-one correspondence with the
proper colorings of G. The quotient of A by K is the face ring of a simplicial complex
whose structure can be described explicitly.

The construction of the ideal K is based on a definition of Chung and Graham
[6], whose purpose was to give a combinatorial interpretation to the coefficients of
the chromatic polynomial χ(n) of G when written in the basis {

(

n+k
d

)

}k=0,...,d. It was
shown by Chow [5] that this result can also be derived from a theorem of Stanley’s
concerning his chromatic symmetric function [10]. However, our construction does
not seem to be much related to Stanley’s chromatic symmetric function. In fact,
our complexes are isomorphic for the two non-isomorphic graphs on n ≥ 4 vertices
and two edges, whereas Stanley’s functions for these graphs are not equal. On the
other hand, our complex does distinguish the two non-isomorphic (but chromatically
equivalent) graphs on five vertices that Stanley’s function does not distinguish.

As it happens, invariants related to colorings of a graph G often have connections
to the acyclic orientations of G. In our case, we show that the Euler characteristic
of the coloring complex equals the number of acyclic orientations of G.



It should also be mentioned that Brenti asked [3] whether there exists, for an
arbitrary graph G, a standard graded algebra whose Hilbert polynomial equals the
chromatic polynomial of G. This was answered in the affirmative by Almkvist [1],
but his proof is non-constructive. The structure of such a graded algebra, however,
will not necessarily be closely related to the colorings of G, since its monomials of
degree less than the chromatic number of G cannot correspond to colorings of G.

Throughout this paper, unless otherwise specified, G is a graph on d vertices
labeled by the elements of [d] = {1, 2, . . . , d}, with no loops and no multiple edges.
Frequently, but not always, we suppress G from the notation for simplicity.

A path of length k in G is a sequence v0, v1, v2, . . . , vk of vertices of G such that
there is an edge between vi−1 and vi, for each i ∈ [k].

A stable set in G is a set of vertices with no edge between any pair.
Let V be the set of vertices of G. A coloring of G is a map φ : V −→ N with

φ(x) 6= φ(y) if x and y are adjacent in G, that is, if there is an edge between x and y.
Thus, we treat the natural numbers as colors and when referring to the ordering of
colors, we mean the usual ordering on N. (Observe that we omit the word “proper”
from the definition of coloring, since we only consider proper colorings).

A coloring of G with n colors, or n-coloring , is a map φ : V −→ [n] with
φ(x) 6= φ(y) if x and y are adjacent. (Observe that φ need not be surjective.)

Definition 1 Let S1, S2, . . . , Sm be an ordered partition of the vertices of G. For
v ∈ G let `(v) be the length of the longest path vi1 , vi2 , . . . , vip = v (ending in v) in
G such that vij ∈ Sij for each j and i1 < i2 < · · · < ip.

If π = a1a2 · · · ad is a permutation in the symmetric group Sd we let π induce
the ordered partition of the vertices in G obtained by letting ai constitute the i-th
block (singleton) in the ordered partition. In accordance with the definition of `(v)
subject to an ordered partition, we then let `(k) be the length of the longest path
ai1 , ai2 , . . . , ak (ending in ak) in G such that i1 < i2 < · · · < k.

The following definition is a variation of a definition of Chung and Graham in
[6, §5].

Definition 2 The integer k ∈ [0, . . . , d − 1] is a cut in π (with respect to G) if

1. k = 0, or

2. `(k) < `(k + 1), or

3. `(k) = `(k + 1) and ak < ak+1.

Definition 3 Let π = a1a2 · · · ad be a permutation with cuts i1 = 0, i2, . . . , ik. The
G-sequence of π is the sequence of sets S1, S2, . . . , Sk where Sj = {aij+1, aij+2, . . . , aij+1

},
for j < k, and Sk = {aik+1, aik+2, . . . , ad}. The short G-sequence of π is S1, S2, . . . , Sk−1.

As an example, let G be the graph

1 2 3 4 5 6 7
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and let π be the permutation 5236417. Then the path lengths `(k) associated to π
are given by

5 2 3 6 4 1 7
0 0 1 0 2 1 1

so π has cuts 0, 2, 4 and 6 and thus G-sequence {2, 5}, {3, 6}, {1, 4}, {7}.

Lemma 4 Let S1, S2, . . . , Sk be the G-sequence of a permutation π. If am, am+1 ∈
Si then either `(m) > `(m + 1) or else `(m) = `(m + 1) and am > am+1. Moreover,
each Si is a stable set in G.

Proof: The first part of the lemma follows directly from Definitions 2 and 3. Thus,
if am and ak both belong to Si, with m < k, then `(m) ≥ `(k). But if am and ak are
adjacent in G then `(m) < `(k), since a path ending in am can always be extended
to end in ak. That is a contradiction, so no two elements in Si are adjacent in G.

The following theorem is stated (in a different, but equivalent, form) in [6], where
it is claimed that it follows from the work of Brenti in [2]. Also, in [4] it is shown that
the theorem follows from certain properties of the chromatic symmetric function of
Stanley [10]. We give a proof that is different from both of these, but which better
suits our purposes. First, a definition.

Definition 5 Let P (n) be a polynomial of degree d. The W -transform of P is the
polynomial W defined by

∑

n≥0

P (n)tn =
W (t)

(1 − t)d+1
.

That W is a polynomial is easily shown, as is the fact that its degree is at most
equal to the degree of P .

Theorem 6 Let WG(t) be the W -transform of χ
G, that is,

∑

n≥0

χ
G(n)tn =

WG(t)

(1 − t)d+1
.

Then we have
WG(t) =

∑

π∈Sd

tc(π),

where c(π) is the number of cuts in π. In particular,
∑

π∈Sd

tc(π) is independent of the

labeling of G.
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Proof: Define wi, for 0 ≤ i ≤ d, by setting WG(t) = w0 + w1t + · · · + wdt
d. Then

the claim is equivalent to saying that

χ
G(n) =

d
∑

k=0

(

n + k

d

)

wd−k,

or, in other words, that there are, for each permutation in Sd with (d − k) cuts,
exactly

(

n+k
d

)

ways to color G with n colors. Let π be such a permutation. By the
latter part of Lemma 4, there is an obvious way to associate a permutation π with
k cuts to a coloring using k (out of n available) colors. Namely, color the vertices
corresponding to the letters between the (i−1)-st and the i-th cut with color number
i, and the letters after the last cut with color k.

Since π has (d− k) cuts, there are exactly k places between adjacent letters in π
that do not correspond to cuts. Let us pick, among n colors and k non-cuts, exactly
d items, say i non-cuts and (d−i) colors. Then we have chosen which (d−i) colors to
use, and which i non-cuts to retain. We now introduce extra cuts at the remaining
(k − i) non-cuts, which means we have a total of (d − k) + (k − i) = (d − i) cuts,
and thereby (d− i) stable sets, which get colored by the (d− i) colors chosen, in the
order prescribed by π.

Thus, we have associated
(

n+k
d

)

colorings to each permutation π ∈ Sd with (d−k)
cuts.

For the converse, we need to show that each coloring of G using some of n
available colors arises from a unique permutation, together with a choice of extra
cuts, as described above. Given such a coloring, partition the vertices of G into
blocks, each consisting of all vertices with like color, and order the blocks increasingly
by color. Within each block, order the vertices so that their corresponding maximal
path lengths `(m) are (weakly) decreasing, and so that the vertices are decreasing
when two vertices have the same maximal path length associated to them. This can
always be done, because the path lengths of two vertices in the same block depend
only on the vertices in preceding blocks. Thus, writing the vertices in the order
described we get a unique permutation π in Sd.

By the construction of π, all of its cuts occur between blocks of the ordered
partition P from which π was constructed. Thus, the coloring from which P was
constructed arises from π together with the extra cuts (separating blocks in P ) that
are not cuts in π.
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2 The coloring ideal

The field k in the following definition can be taken to be the complex numbers.
Also, all rings are taken to be commutative. Recall that the short G-sequence of a
permutation π is the G-sequence of π take away the last set in the sequence.

For undefined terminology and background in what follows, see [9].
Let A = k [xS | S ⊆ [d]], that is, A is the polynomial ring whose indeterminates

correspond to all subsets of [d]. Throughout, R will denote the face ring (or Stanley-
Reisner ring) of the order complex of the Boolean algebra on d atoms. This ring
is the quotient A/I, where I = {xSxT | S * T and T * S}. Thus, the monomials
of R correspond precisely to those monomials M = xS1

xS2
· · · xSk

∈ A for which
∅ ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ [d] (for some (unique) rearrangement of the indices).

Definition 7 Let M = xS1
xS2

· · · xSk
be a monomial in A such that

∅ ( S1 ( S2 ( · · · ( Sk ( [d],

where ( denotes strict inclusion. Then M is a basic coloring monomial for G if
there is a permutation π ∈ Sd with short G-sequence S1, S2 \ S1, . . . , Sk \ Sk−1.

A nonzero monomial M = xS1
xS2

· · · xSk
∈ A is a coloring monomial for G if M

is divisible by a basic coloring monomial for G.

Definition 8 The coloring ideal of G is the ideal KG in R generated by all (equiv-
alently by the basic) coloring monomials for G.

Note that a coloring monomial may not be divisible by x[d], since no basic coloring
monomial is divisible by x[d], as it is constructed from a short G-sequence. That we
choose to define the coloring ideal in this way is due to a technicality which will be
explained in Remark 15.

We shall now show that the monomials of degree n in KG are in one-to-one
correspondence with the colorings of G with n + 1 colors.

It follows from the definitions of R and KG that any monomial M in KG can be
written as

xe1

S1
xe2

S2
· · · xek

Sk

such that S1 ( S2 ( · · · ( Sk ⊆ [d] and such that Si \ Si−1 is a stable set in G for
each i. Such a monomial gives rise to a unique coloring of G with n colors where n is
the degree of M . Namely, if S1 = ∅, the colors 1, 2, . . . , e1 are not used. Otherwise,
the vertices in S1 get color 1. The vertices in S2 \S1 get color e1 +1 and, in general,
the vertices in Si \ Si−1 get color e1 + e2 + · · ·+ ei−1 + 1. The vertices in [d] \ Sk get
color

∑

i ei + 1. If Sk = [d] and ek > 0 then the last ek colors are not used (recall
that in an n-coloring not all n colors have to be used).

As an example, suppose
M = x2

∅ · x
3
25 · x

2
235

is a coloring monomial for G (where we write 25 for the set {2, 5} etc.). In the
corresponding coloring of G with 8 colors, the vertices 2 and 5 get color 3, the
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vertex 3 gets color 6 and all the remaining vertices (however many they are) get
color 8. Multiplying M by xe

[d] corresponds to regarding the coloring in question as
a coloring with 8+e colors. Clearly, two different monomials yield different colorings.
If they are identical except for the exponent to x[d] they correspond to colorings with
a different number of colors, although each vertex gets the same color in each of the
two colorings.

Conversely, suppose we have a coloring of G with n colors (of which not all
have to be used). Then each color is associated to a stable set. Order these sets
increasingly by color and let Si be the union of the first i of them. Then we can
construct a corresponding coloring monomial as we now explain by an example.
Suppose we have a 9-coloring of G where vertices 3 and 6 have color 4, vertex 7 has
color 6 and vertices 1, 2, 4 and 5 have color 7. Then we have the sequence of sets
{3, 6}, {3, 6, 7} and {1, 2, 3, 4, 5, 6, 7}. Given the colors used, and the fact that this
is to be a 9-coloring, the corresponding coloring monomial is

x3
∅ · x

2
36 · x367 · x

2
[7].

We record this in the following theorem.

Theorem 9 There is a one-to-one correspondence between the (n + 1)-colorings of
G and the monomials of degree n in KG.

As an immediate consequence we now get the following.

Corollary 10 Let F (KG, t) be the Hilbert series of KG and let d be the number of
vertices in G. Then

F (KG, t) =
1

t
·

WG(t)

(1 − t)d+1
,

Equivalently, H(KG, n) = χ
G(n + 1), that is, the Hilbert polynomial of KG equals,

up to a shift by one, the chromatic polynomial of G.

3 The coloring complex and its face ring

Clearly, the basic coloring monomials are square-free. Thus, the quotient R/KG is
the face ring of a simplicial complex whose vertex set is a subset of {S | S ⊆ [d]}
and whose minimal non-faces are

{ {S1, S2, . . . , Sk} | xS1
xS2

· · · xSk
is a basic coloring monomial}.

We call this complex the coloring complex of G and denote it by ∆G.
One of the fundamental facts in the theory of face rings is that the h-vector

of a d-dimensional complex ∆ is given by the coefficients of the numerator when
the Hilbert series of the face ring S of ∆ is written as a rational function with
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denominator (1 − t)d+1. Thus, one customarily writes the Hilbert series F (S, t) of
such a ring in the form

F (S, t) =
h(S, t)

(1 − t)d+1
=

h0 + h1t + · · · + hd+1t
d+1

(1 − t)d+1
,

where (h0, h1, . . . , hd+1) is the h-vector of ∆.
The following is easy to prove.

Lemma 11 If M is an ideal in a ring S then F (S/M, t) = F (S, t) − F (M, t).

It is shown in Theorem 14 that the complex ∆G, whose face ring is R/KG, has
codimension one as a subcomplex of the order complex of the Boolean algebra on d
atoms, whose face ring is R. Thus, letting S = R and M = KG in Lemma 11, we
obtain

h(R/KG, t)

(1 − t)d
= F (R/KG, t) = F (R, t) − F (KG, t). (1)

Also, the ring R is the face ring of a cone over the first barycentric subdivision
of a (d − 1)-simplex and it is well-known that its Hilbert series is given by

F (R, t) =
1

t
·

Ad(t)

(1 − t)d+1
,

where Ad(t) is the d-th Eulerian polynomial, which satisfies

∑

n≥0

ndtn =
Ad(t)

(1 − t)d+1
.

Using this, together with identity (1) and Corollary 10, allows us to relate the Hilbert
series of R/KG to the tail of the chromatic polynomial of G, which we now define.

Definition 12 The tail of the chromatic polynomial χ
G of G is TG(n) = nd−χ

G(n).

Theorem 13 We have

1

t

∑

n≥0

TG(n)tn =
h(R/KG, t)

(1 − t)d
.

Thus, up to a shift by one, the W -transform of the tail TG of χ
G equals the polynomial

whose coefficients are the coordinates of the h-vector of the coloring complex of G .

Proof: We have

1

t

∑

n≥0

TG(n)tn =
∑

n≥0

(n + 1)dtn −
1

t

∑

n≥0

χ
G(n)tn =

1

t
·

Ad(t)

(1 − t)d+1
−

1

t
·

WG(t)

(1 − t)d+1

= F (R, t) − F (KG, t) = F (R/KG, t) =
h(R/K, t)

(1 − t)d
.
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We shall now describe the structure of the complex ∆G.
First, however, to facilitate the following discussion we will let the ring R be

the face ring of the order complex of the truncated Boolean algebra B̃d on d atoms,
where B̃d is Bd with ∅ and [d] removed. This is a harmless modification with
respect to our previous results (except in the rather trivial cases when G has fewer
than three vertices) because the indeterminates x[d] and x∅ divide none of the basic
coloring monomials. Thus, the Hilbert series of R/KG is changed only in that the
denominator is divided by (1−t)2. The order complex of B̃d is isomorphic to the first
barycentric subdivision of the boundary of a (d − 1)-simplex, which has dimension
d − 2.

This, of course, amounts to a redefinition of the coloring complex, but even here
the modification is trivial. Namely, in the complex ∆G, ∅ and [d] are both cone
points that is, they belong to every facet of ∆G. It is easy to show that removing
a cone point (and all faces containing it) from a complex changes the h-vector only
by removing its last coordinate, which is necessarily 0. Thus, the h-vector of ∆G

remains essentially the same after removing ∅ and [d].
To each edge e = ij of G, with i < j, we associate the (d−1)! permutations of the

letters in Se = [d] \ {i, j} ∪ {e}. We call the permutations of Se e-permutations and
we shall show that the facets of ∆G correspond precisely to the edge permutations
for G. It is important to note that, since we have removed the cone point [d] from our
complex, the facet corresponding to an edge-permutation does not contain the vertex
[d]. As an example, the facet corresponding to the 25-permutation 3 − 25 − 1 − 4
has vertices {3}, {2, 3, 5} and {1, 2, 3, 5}.

Theorem 14 Let G be a graph with d ≥ 3 vertices.

1. To each edge of G there correspond exactly (d − 1)! facets of ∆G and these
are all the facets of ∆G. The sets of such facets for two distinct edges of G
are disjoint. The facets thus corresponding to an edge form a (d − 3)-sphere,
which we call an edge-sphere and which is isomorphic to the order complex of
a truncated Boolean algebra on (d − 1) elements. That is, an edge-sphere is
isomorphic to the first barycentric subdivision of the boundary of a (d − 3)-
simplex. In particular, ∆G has dimension d− 3, unless G is the graph with no
edges, in which case ∆G is the empty complex.

2. Any two edge-spheres intersect in a (d − 4)-sphere which is isomorphic to the
order complex of a truncated Boolean algebra on (d−2) elements. Moreover, if
e and f = ij are two edges, then the intersection of their two spheres separates
the e-sphere into two halves, where one contains all vertices of ∆G that contain
i and not j, whereas the other half contains those vertices that contain j and
not i.

Proof:

1. If G has no edges, then the permutation π = d (d−1) . . . 2 1 has no cuts except
0, since `(i) = 0 for all i. Thus, π corresponds to the empty monomial, or 1,
and therefore the ideal KG is the entire ring R, so ∆G is the empty complex.
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Suppose then that e = ij is an edge in G. Let π = a1a2 · · · ad where, for some
k, we have ak = i and ak+1 = j. Let S0 = ∅ and let F = {S1, S2, . . . , Sd−2},
where

Sm =







Sm−1 ∪ {am}, if m < k,
Sm−1 ∪ {i, j}, if m = k,
Sm−1 ∪ {am+1}, if m > k.

Clearly, F is a facet, since it has d−2 vertices and thus has maximal dimension.
We claim that ∆G contains F . If ∆G doesn’t contain F then the ideal KG

must contain a monomial dividing xS1
·xS2

· · · · · xSd−2
and thus there must be

a permutation with a short G-sequence of which S1, S2 \S1, . . . , Sd−2 \Sd−3 is
a refinement. But such a sequence must contain a set containing both i and j,
which is a contradiction since ij is an edge in G (see Lemma 4). We have thus
exhibited (d− 1)! facets F associated to the edge ij. It is easy to see that two
facets thus corresponding to different edges are different. Namely, each vertex
in such a facet is a set of vertices from G that either contains both or neither
of a unique pair of vertices in G, and this pair of vertices constitutes the edge
associated to the facet.

Conversely, we need to show that any face of ∆G belongs to a facet associated
to some edge of G as described above. Let F = {S1 ⊆ S2 ⊆ · · · ⊆ Sk} be a
face of ∆G.

We first show that some of the difference sets Di = Si \ Si−1 must contain the
vertices of an edge in G. If that is not the case then all the Di are stable sets in
G. Construct a permutation π in Sd by first writing all the elements of D1 in
decreasing order, then those of D2 in order of decreasing path lengths (w.r.t.
to the vertices in D1) and in decreasing order when two vertices have the same
path length associated to them (see the proof of Theorem 6). Continue this way
with all the Di’s. Then D1, D2, · · · , Dk is a refinement of the short G-sequence
of π, so the coloring ideal of G contains a monomial dividing xS1

xS2
· · · xSk

.
This implies that F is a non-face of ∆G, a contradiction, so some of the Di’s
must contain an edge e of G.

This means that we can refine the chain of vertices of F down to singletons
except for having one of the sets in the refinement consist of the two vertices
of e. We have shown above that this refinement is a facet of ∆G, and it is easy
to see that it contains the face F .

2. If the edges e = ij and f = km are disjoint, then the intersection of the
e-sphere and the f -sphere consists of the subcomplex of ∆G whose vertices
contain either both or neither of the vertices of the edge e and, independently,
either both or neither of the vertices of the edge f . This subcomplex contains
all faces of ∆G corresponding to permutations of [d] where i and j are adjacent
and in increasing order and where the same is true of m and k.

If e = ij and f = kj are distinct edges then the intersection of the e-sphere
and the f -sphere consists of the subcomplex of ∆G whose vertices contain
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either all of i, j, k or none of them. This subcomplex contains all faces of ∆G

corresponding to permutations of [d] where i, j and k are three successive
letters and in increasing order.

In either case it is easy to see that the subcomplex of the intersection has
dimension d − 4 and that it separates the e-sphere as claimed. Namely, there
is a path along edges of ∆G, not crossing the subcomplex, between any pair
of vertices that belong to the same one of the halves described, but no such
path between vertices in different halves.

Remark 15 It is possible to consider the complex obtained in the same way as
the coloring complex except that we don’t remove the cone point [d] from ∆G.
This corresponds to associating the basic coloring monomials to the G-sequences
of the permutations in Sd rather than their short G-sequences (and not stripping
the face ring of the indeterminate x[d]). The h-vector of this complex is the d-th
Eulerian vector (coefficients of the d-th Eulerian polynomial) plus the h-vector of the
coloring complex shifted one step right. Thus, knowing the h-vector of this complex
is equivalent to knowing the h -vector of ∆G. As an example, for the graphs in
Figure 1 we get h-vector

(1, 11, 11, 1) + (0, 1, 10, 7) = (1, 12, 21, 8),

since the fourth Eulerian polynomial is A4(t) = t + 11t2 + 11t3 + t4.

Clearly, if the coloring complexes of two graphs are isomorphic, then the graphs
must be chromatically equivalent , that is, they must have the same chromatic poly-
nomial. However, it is possible for two non-isomorphic graphs to have isomorphic
coloring complexes. Namely, there are two non-isomorphic graphs on n ≥ 4 vertices
and two edges. It follows from Theorem 14 that the coloring complexes of these
graphs must be isomorphic, because each consists of two edge-spheres that intersect
in a way independent of whether the edges in question are disjoint. Although these
are the only examples we know of non-isomorphic graphs with isomorphic coloring
complexes we do not know what the situation is in general. In Figure 1 we give
the coloring complexes of the two non-isomorphic — but chromatically equivalent
— graphs on three edges and four vertices. As can be seen, these complexes are not
isomorphic (one has a “triangle” and the other one doesn’t).

Perhaps more interesting is that the coloring complex distinguishes the two
graphs given in Stanley’s paper [10, Figure 1], which his chromatic symmetric func-
tion does not distinguish (see Figure 2). This can be seen as follows: A complex on a
given vertex set is determined by (in fact equivalent to) its set of minimal non-faces,
which in turn is equivalent to the (unique) minimal set of generators of the ideal
defining its face ring. Suppose the graphs G and H in Figure 2 have isomorphic
coloring complexes. Then there is a bijection φ between their vertex sets so that A
is a minimal non-face of ∆G if and only if φ(A) is a minimal non-face of ∆H . Thus,
the minimal sets of generators for the coloring ideals of G and H must have the
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Figure 1: Two non-isomorphic graphs (trees) with the same chromatic polynomial
but non-isomorphic coloring complexes.

same number of monomials of each degree. Also, the multiplicities of corresponding
indeterminates in the sets of monomials constituting the respective minimal gener-
ating sets for each coloring ideal must be the same. This is not the case for the
coloring ideals of G and H, which we have verified with the aid of the computer
algebra program Macaulay 2 [7].

The next corollary follows from part 1 of Theorem 14. It can also be proved
directly from the well-known fact that the coefficient to −nd−1 in χ

G, which is the
leading coefficient of TG, equals the number of edges in G.

Corollary 16 The number of facets of ∆G, and thus the sum of the coefficients of
the h-vector of ∆G, is E · (d − 1)!, where E is the number of edges in G.

Theorem 17 The Euler characteristic of ∆G equals the number of acyclic orienta-
tions of G.

Proof: Up to a sign, the reduced Euler characteristic of a (d − 1)-dimensional
complex ∆ is equal to the d-th coordinate hd(∆) of the h-vector of ∆ and thus
the reduced Euler characteristic of ∆G equals the leading coefficient of the W -
transform of the tail TG(n) of the chromatic polynomial. It is well known (and easy
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Figure 2: Another two non-isomorphic graphs with the same chromatic polynomial
and same symmetric chromatic function but non-isomorphic coloring complexes.
(See [10, Figure 1].)

to prove) that the leading coefficient of the W -transform of a polynomial P (x) =
a0 + a1x + · · · + adx

d equals, up to a sign, the alternating sum of the coefficients
of P . More precisely, it equals (−1)dP (−1), where d is the degree of P . Clearly,
(−1)d−1T (−1) = (−1)dχ

G(−1)− 1. But, by a theorem of Stanley [8, Corollary 1.3],
(−1)dχ

G(−1) equals the number of acyclic orientations of G. Since the reduced
Euler characteristic is one less than the Euler characteristic, this establishes the
claim.
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Open problems

An obvious question is whether ∆G is shellable. A consequence of shellability
would be that ∆G (equivalently R) is Cohen-Macaulay In that case the h-vector
of the coloring complex must be an M -vector (see [9]), which would put certain
restrictions on the values of the tail TG and thereby on the values of the chromatic
polynomial.

For i = 1, . . . , d, let θi =
∑

|S|=i xS . Then it can be shown that θ = θ1, θ2, . . . , θd

is a homogeneous (linear) system of parameters for R. Is R a free k[θ]-module? That
is equivalent to R being Cohen-Macaulay. However, a proof of this would likely be
equivalent to finding a shelling of ∆G, and shellability of ∆G would imply that ∆G

(equivalently R) is Cohen-Macaulay.
It might be interesting to know what the minimal set of generators is for the

coloring ideal of a graph G and in particular what the size of this set is. Perhaps
it is more interesting to determine this for the ideal K ∪ I, where K is the coloring
ideal of G and I is the ideal used in defining the ring R, since the face ring of the
coloring complex C is given by A/(K ∪ I).
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