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Abstract. For n > 2, the boolean quadric polytope P, is the convex hull in d := (njl)
dimensions of the binary solutions of z;z; = y;;, for all + < jin N := {1,2,....,n}. The
polytope is naturally modeled by a somewhat larger polytope; namely, Q,, the solution set
of yij <z, yij <z, 2 +x; <14y, y; >0, foralls,7in N. In a first step toward
seeing how well Q,, approximates P,, we establish that the d-dimensional volume of Q,
is 227~y /(2n)!. Using a well-known connection between P,, and the “cut polytope” of a
complete graph on n 4+ 1 vertices, we also establish the volume of a relaxation of this cut

polytope.
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1. Introduction. A natural approach to the unconstrained, quadratic-objective, binary

program in n (> 2) variables

maX{Zcmi—{— Z dijriz; xiE{O,l}ViEN}, (1)

iEN i<jeEN
where N := {1,2,...,n}, is to model the problem as a linearly constrained, linear-objective,
binary program, through the use of (g) auxiliary binary variables y;; which model the

quadratic terms z;2;. We obtain the equivalent program

max Zcimi-l- Z dijyz‘j, (2>

1EN i<jeEN
subject to y;; <x; Vi<j€N, 3
4
5
6
7

8

yij <z; Vi<jéeN,

yi; >0 Vi<jyj€eN,
ri+z;<1l4+y; Vi<jyeN,
z; € {0,1} Vi€ N,

yij €{0,1} Vi< jeN.

(3)
(4)
(5)
(6)
(7)
(8)

The boolean quadric polytope P, is the convex hull (in real d := (n-zl-l) space) of the set
of solutions of (3-8). As the problem of solving (2-8) is NP-Hard, it is natural to consider
branch-and-cut methods based on (2-6). The relaxed feasible region (3-6) is denoted by
Q.. Padberg (1989) has made a detailed study of P, and Q,, (also see Deza, Laurent and
Poljak (1993), and Pitowsky (1991)).

It is natural to consider how good of an approximation Q, is to P,. The Chvatal-
Gomory rank (see Schrijver (1986) and Chvatal, Cook and Hartman (1989)) of P, with
respect to @, increases with n, so in a certain combinatorial sense, @, 1s a poor approx-
imation of P,. In a different combinatorial sense @, is quite close to P,; that is, the
1-skeleton of P, is a subset of the 1-skeleton of Q, (the so-called Trubin Property) (see
Padberg). Another method has been proposed to study the closeness of pairs of nested
polytopes, based on the volumes of the polytopes. Lee and Morris (1994) have suggested

the distance function

pi(Qn, Pn) = (%)l/d ~ <%>1/d’

where B? is the d-dimensional Euclidean ball, and vol; denotes d-dimensional Lebesgue

measure. For polytope pairs contained in [0, 1]¢, pg is at most O(\/E) In some interesting
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cases of sets of polytope pairs, pg may increase more slowly than this upper bound, in
other situations the bound is sharp (see Lee and Morris). In Section 2, as a step toward
determining the asymptotic behavior of pq(Qn, Pr), we calculate volg(Qy).

There is a well-known connection between P, and the “cut polytope” of a complete
graph on n 4 1 vertices. In Section 3, we determine the volume of a natural relaxation of
this cut polytope.

2. The Volume of a Relaxed Boolean-Quadric Polytope. Let Q! := 2Q,, that
is, the polytope Q,, magnified by a factor of 2. Clearly, volg(Q!) = 2%voly(Q,,). Padberg

demonstrated that Q! is a lattice polytope (i.e., its extreme points are lattice points). For

!/
n

simplicity, we work with Q. , which is defined by the inequalities

yij <wx; Vi<j€EN, (9)
vi; <x; Vi<jyeN, (10)
yi; >0 Vi<jeN, (11)
ri+z; <24y; Vi<jeN. (12)

Our first step in calculating volg(Q/) is to reduce the problem to that of calculating
the volume of a subset of Q!. Points in Euclidean d-space will be denoted by (z,y) =

(l‘l,l‘g, vy TpyY12,Y13, - - - ,yn_Ln). FOI a &€ {0, 1}”, let

Co, ={(r,y)€Ql, : a<z<a+1},

where 1 is the n-vector (1,1,...,1). Clearly, Q! is the union of all such polytopes C,.
Furthermore, volg(C, N Cy) = 0 for a # b, so volg(Q)) = >, vola(Ca).

Proposition 1. vols(C,) = volg(Cop), for all a € {0,1}™ .

Proof: It suffices to demonstrate that if binary n-vectors a and b differ in precisely one
coordinate, then vols(C,) = vola(Cyp). Suppose, without loss of generality, that a; = b; for
J#1,a; =0, and b; = 1. We define a map ®; : C, — C} as follows: ®; is a composition
of coordinate maps {¢;, ¢j, Pri, Pij, dr; : 1 < k <1 < j < n}, where ¢;(z;) 1= 2 — z;,
¢j(xj) = xj for j # 4, drj(yrs) = Ykj, Gij(Yij) = x5 — yij, and dri(yri) == xk — yY&i. To
see that the range of ®; is contained in Cp, we only need to consider ¢;;; the analysis for

ok 1s similar. Clearly,

bij(yij) = x5 — yij < x5 = dj(zj),
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and
Gij(yij) = —yij S x5 —xi —xj+2=2—x; = di(z;).
Also,
bi(wi) + () =2 —xi + 25 S2—yij + 2 =2+ bij(yij)-
Thus, we have shown that ®; is, indeed, a map from C, into Cy.! It is trivial to
check that @; is an involution. Consequently, ®; is bijective and unimodular, and thus

measure preserving, so voly(Cy) = voly(Cy). Now, given an arbitrary binary n-vector a,

the composition of the maps in {®; : a; = 1} gives a measure preserving bijection from

Co to C4, so voly(Cy) = volg(Co). n
Corollary 2. voli(Q!,) =2"vols(Co) . n

Let (Sn, <) denote the poset (partially ordered set) on Sy, := {z; : 1 <i <n}U{y; :
1 <1 < j < n} having y;; < z; and y;; < z;. Let e(S,,<) denote the number of
(linear) extensions of (S,, <), i.e., the number of order-preserving bijections from S, to

D :={1,2,...,d}, where the order on D is the usual one.

Proposition 3. voly(Co) = e(S,, <)/d!
Proof: By definition,

Co={(r,y) €Ql, : 0<2;,<1(1<i<n)}.

It follows that Cg is defined by the inequalities (9 — 11) and

2i<1, 1<i<n, (13)

with (12) rendered vacuous. Cgq is the order polytope (see Stanley (1986)) of the poset
(Sn, <). The result follows by Corollary 4.2 of Stanley. u

Theorem 4. ¢(S,, <) = n!ld!2"/(2n)! .

Proof: We regard extensions of (S,, <) as permutations of the set S,,. That is, given a
bijection 7 : S, — D, we represent 7 by the permutation 7' (d)x~'(d — 1)--- 7~ 1(1).
Define an ordered extension of (S,, <) to be an extension of (S,, <) such that z; appears

to the left of xy, for 1 <i < k < n. That is, we regard an ordered extension of (S,,~<) as

! The map ®; is called a “switching” and is a standard tool in the analysis of the “cut
polytope” (see Deza and Laurent (1992) and Pitowsky (1991)).
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a permutation of .S, in which z; appears to the left of xy, and y;r appears to the right of
both z; and zy, for 1 <1 < k < n. Clearly the number of extensions equals n! times the
number of ordered extensions.

Next, we proceed to count the number of ordered extensions of (S, <). Suppose that
{yir : k+1 <1< n} have already been positioned, for some fixed : < k + 1. We see, now,
how to place {y;. : 1 <1 <k — 1}. The element y;; should be placed to the right of zy.
As there are already fr :=n—k+1+ (g) — (’26) elements of 5, placed after xy, there are
fr possible positions for yy. Then, there are fr 4+ 1 possible positions for ys, up through
fr +k —1 possible positions for yz_; . In total, the number of ordered extensions is equal

to

- = (fe +k=2)!
I o= TV
(-6
('n-H k-|-1>.

(Qn)!

I
M Eoul
et

nl-dl-2
(Zn)!

Hence, we get that e(S,, <) =

Corollary 2, Proposition 3, and Theorem 4 now yield

Theorem 5. voly(Q,) = 22"_dn!/(2n)! . n

We note that by Stirling’s formula, volg(Q%) = 27/2(¢/n)"(1 + o(1)) . Hence, for
example, if it could be shown that vols(2P,) = 2_1/2(e/n)d(l + o(1)), then we could
conclude that pg(Q., Py) behaves like V.

3. The Volume of a Relaxed Cut-Polytope of a Complete Graph . Let G be
a simple undirected graph with vertex set V(G) := {0,1,2,...,n} = N U {0} and edge
set E(G). A cut of G is any set of edges that crosses a nontrivial partition of V(G);
that is, F¥ C E(G) is a cut if F' is the set of edges with exactly one endpoint in some
nonempty proper subset W of V(G). Associated with every cut of G is its incidence vector
z € {0,1}P(9) | Let the cut polytope of G be the convex hull of the incidence vectors of cuts
of G. For the complete graph K,, 11, we denote the cut polytope by C,,+1. We immediately
notice that P, and C,41 both have dimension d = (njl) As has been observed by many

authors (see Deza and Laurent), there is a linear bijective transformation 7 from P, to
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cn-H; namely,
T 1= Z0; VieN,
1

Yij = §(Zoi+20j—2ij) Vi<jy€N.

We may apply this same transformation to the relaxed Boolean-quadric polytope and

define Dy 41 := 7(Qn), a natural relaxation of Cp41. The polytope Dy41 is the solution

set of
20i — 205 — 2ij <0 Vi<jé€N,
—20i + 20 — 2ij <0 Vi<jé€N,
—z0i — 205 + 2ij <0 Vi<jé€N,
20i + 205 + 2ij < 2 Vi<jé€N.
Let @ := {x1,22,..., 22}, 2° := (201, 202, - ., 20n) %, 2 i= (ZZ;,), and define y and zVV so

N

that y;; occupies the same position in y as z;; does in 2", 1 < 3 € N. In matrix terms, we

can view the transformation 7 as

()= (e 4)(5)

where A is a vertex-edge incidence matrix of K, on vertex set N. The absolute value of

2n—d

the determinant of the transformation matrix is , so we can conclude the following

result.
Theorem 6. voly(D,,4+1) = 2"n!/(2n)! .
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